Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In exist...Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In existing technologies,the efficiency of big data applications(BDAs)in distributed systems hinges on the stable-state and low-latency links between worker nodes.However,LMCNs with high-dynamic nodes and long-distance links can not provide the above conditions,which makes the performance of OBDP hard to be intuitively measured.To bridge this gap,a multidimensional simulation platform is indispensable that can simulate the network environment of LMCNs and put BDAs in it for performance testing.Using STK's APIs and parallel computing framework,we achieve real-time simulation for thousands of satellite nodes,which are mapped as application nodes through software defined network(SDN)and container technologies.We elaborate the architecture and mechanism of the simulation platform,and take the Starlink and Hadoop as realistic examples for simulations.The results indicate that LMCNs have dynamic end-to-end latency which fluctuates periodically with the constellation movement.Compared to ground data center networks(GDCNs),LMCNs deteriorate the computing and storage job throughput,which can be alleviated by the utilization of erasure codes and data flow scheduling of worker nodes.展开更多
A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for det...A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for determining band-pass filter parameters based on signal-to-noise ratio gain,smoothness index,and cross-correlation coefficient is designed using the Chebyshev optimal consistent approximation theory.Additionally,a wavelet denoising evaluation function is constructed,with the dmey wavelet basis function identified as most effective for processing gravity gradient data.The results of hard-in-the-loop simulation and prototype experiments show that the proposed processing method has shown a 14%improvement in the measurement variance of gravity gradient signals,and the measurement accuracy has reached within 4E,compared to other commonly used methods,which verifies that the proposed method effectively removes noise from the gradient signals,improved gravity gradiometry accuracy,and has certain technical insights for high-precision airborne gravity gradiometry.展开更多
The convergence of Internet of Things(IoT),5G,and cloud collaboration offers tailored solutions to the rigorous demands of multi-flow integrated energy aggregation dispatch data processing.While generative adversarial...The convergence of Internet of Things(IoT),5G,and cloud collaboration offers tailored solutions to the rigorous demands of multi-flow integrated energy aggregation dispatch data processing.While generative adversarial networks(GANs)are instrumental in resource scheduling,their application in this domain is impeded by challenges such as convergence speed,inferior optimality searching capability,and the inability to learn from failed decision making feedbacks.Therefore,a cloud-edge collaborative federated GAN-based communication and computing resource scheduling algorithm with long-term constraint violation sensitiveness is proposed to address these challenges.The proposed algorithm facilitates real-time,energy-efficient data processing by optimizing transmission power control,data migration,and computing resource allocation.It employs federated learning for global parameter aggregation to enhance GAN parameter updating and dynamically adjusts GAN learning rates and global aggregation weights based on energy consumption constraint violations.Simulation results indicate that the proposed algorithm effectively reduces data processing latency,energy consumption,and convergence time.展开更多
Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometri...Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results.展开更多
In response to the lack of reliable physical parameters in the process simulation of the butadiene extraction,a large amount of phase equilibrium data were collected in the context of the actual process of butadiene p...In response to the lack of reliable physical parameters in the process simulation of the butadiene extraction,a large amount of phase equilibrium data were collected in the context of the actual process of butadiene production by acetonitrile.The accuracy of five prediction methods,UNIFAC(UNIQUAC Functional-group Activity Coefficients),UNIFAC-LL,UNIFAC-LBY,UNIFAC-DMD and COSMO-RS,applied to the butadiene extraction process was verified using partial phase equilibrium data.The results showed that the UNIFAC-DMD method had the highest accuracy in predicting phase equilibrium data for the missing system.COSMO-RS-predicted multiple systems showed good accuracy,and a large number of missing phase equilibrium data were estimated using the UNIFAC-DMD method and COSMO-RS method.The predicted phase equilibrium data were checked for consistency.The NRTL-RK(non-Random Two Liquid-Redlich-Kwong Equation of State)and UNIQUAC thermodynamic models were used to correlate the phase equilibrium data.Industrial device simulations were used to verify the accuracy of the thermodynamic model applied to the butadiene extraction process.The simulation results showed that the average deviations of the simulated results using the correlated thermodynamic model from the actual values were less than 2%compared to that using the commercial simulation software,Aspen Plus and its database.The average deviation was much smaller than that of the simulations using the Aspen Plus database(>10%),indicating that the obtained phase equilibrium data are highly accurate and reliable.The best phase equilibrium data and thermodynamic model parameters for butadiene extraction are provided.This improves the accuracy and reliability of the design,optimization and control of the process,and provides a basis and guarantee for developing a more environmentally friendly and economical butadiene extraction process.展开更多
In today’s world,image processing techniques play a crucial role in the prognosis and diagnosis of various diseases due to the development of several precise and accurate methods for medical images.Automated analysis...In today’s world,image processing techniques play a crucial role in the prognosis and diagnosis of various diseases due to the development of several precise and accurate methods for medical images.Automated analysis of medical images is essential for doctors,as manual investigation often leads to inter-observer variability.This research aims to enhance healthcare by enabling the early detection of diabetic retinopathy through an efficient image processing framework.The proposed hybridized method combines Modified Inertia Weight Particle Swarm Optimization(MIWPSO)and Fuzzy C-Means clustering(FCM)algorithms.Traditional FCM does not incorporate spatial neighborhood features,making it highly sensitive to noise,which significantly affects segmentation output.Our method incorporates a modified FCM that includes spatial functions in the fuzzy membership matrix to eliminate noise.The results demonstrate that the proposed FCM-MIWPSO method achieves highly precise and accurate medical image segmentation.Furthermore,segmented images are classified as benign or malignant using the Decision Tree-Based Temporal Association Rule(DT-TAR)Algorithm.Comparative analysis with existing state-of-the-art models indicates that the proposed FCM-MIWPSO segmentation technique achieves a remarkable accuracy of 98.42%on the dataset,highlighting its significant impact on improving diagnostic capabilities in medical imaging.展开更多
In order to obtain high-precision GPS control point results and provide high-precision known points for various projects,this study uses a variety of mature GPS post-processing software to process the observation data...In order to obtain high-precision GPS control point results and provide high-precision known points for various projects,this study uses a variety of mature GPS post-processing software to process the observation data of the GPS control network of Guanyinge Reservoir,and compares the results obtained by several kinds of software.According to the test results,the reasons for the accuracy differences between different software are analyzed,and the optimal results are obtained in the analysis and comparison.The purpose of this paper is to provide useful reference for GPS software users to process data.展开更多
Since 2008 a network of five sea-level monitoring stations was progressively installed in French Polynesia.The stations are autonomous and data,collected at a sampling rate of 1 or 2 min,are not only recorded locally,...Since 2008 a network of five sea-level monitoring stations was progressively installed in French Polynesia.The stations are autonomous and data,collected at a sampling rate of 1 or 2 min,are not only recorded locally,but also transferred in real time by a radio-link to the NOAA through the GOES satellite.The new ET34-ANA-V80 version of ETERNA,initially developed for Earth Tides analysis,is now able to analyze ocean tides records.Through a two-step validation scheme,we took advantage of the flexibility of this new version,operated in conjunction with the preprocessing facilities of the Tsoft software,to recover co rrected data series able to model sea-level variations after elimination of the ocean tides signal.We performed the tidal analysis of the tide gauge data with the highest possible selectivity(optimal wave grouping)and a maximum of additional terms(shallow water constituents).Our goal was to provide corrected data series and modelled ocean tides signal to compute tide-free sea-level variations as well as tidal prediction models with centimeter precision.We also present in this study the characteristics of the ocean tides in French Polynesia and preliminary results concerning the non-tidal variations of the sea level concerning the tide gauge setting.展开更多
The networks are fundamental to our modern world and they appear throughout science and society.Access to a massive amount of data presents a unique opportunity to the researcher’s community.As networks grow in size ...The networks are fundamental to our modern world and they appear throughout science and society.Access to a massive amount of data presents a unique opportunity to the researcher’s community.As networks grow in size the complexity increases and our ability to analyze them using the current state of the art is at severe risk of failing to keep pace.Therefore,this paper initiates a discussion on graph signal processing for large-scale data analysis.We first provide a comprehensive overview of core ideas in Graph signal processing(GSP)and their connection to conventional digital signal processing(DSP).We then summarize recent developments in developing basic GSP tools,including methods for graph filtering or graph learning,graph signal,graph Fourier transform(GFT),spectrum,graph frequency,etc.Graph filtering is a basic task that allows for isolating the contribution of individual frequencies and therefore enables the removal of noise.We then consider a graph filter as a model that helps to extend the application of GSP methods to large datasets.To show the suitability and the effeteness,we first created a noisy graph signal and then applied it to the filter.After several rounds of simulation results.We see that the filtered signal appears to be smoother and is closer to the original noise-free distance-based signal.By using this example application,we thoroughly demonstrated that graph filtration is efficient for big data analytics.展开更多
The current velocity observation of LADCP(Lowered Acoustic Doppler Current Profiler)has the advantages of a large vertical range of observation and high operability compared with traditional current measurement method...The current velocity observation of LADCP(Lowered Acoustic Doppler Current Profiler)has the advantages of a large vertical range of observation and high operability compared with traditional current measurement methods,and is being widely used in the field of ocean observation.Shear and inverse methods are now commonly used by the international marine community to process LADCP data and calculate ocean current profiles.The two methods have their advantages and shortcomings.The shear method calculates the value of current shear more accurately,while the accuracy in an absolute value of the current is lower.The inverse method calculates the absolute value of the current velocity more accurately,but the current shear is less accurate.Based on the shear method,this paper proposes a layering shear method to calculate the current velocity profile by“layering averaging”,and proposes corresponding current calculation methods according to the different types of problems in several field observation data from the western Pacific,forming an independent LADCP data processing system.The comparison results have shown that the layering shear method can achieve the same effect as the inverse method in the calculation of the absolute value of current velocity,while retaining the advantages of the shear method in the calculation of a value of the current shear.展开更多
The Kuiyang-ST2000 deep-towed high-resolution multichannel seismic system was designed by the First Institute of Oceanography,Ministry of Natural Resources(FIO,MNR).The system is mainly composed of a plasma spark sour...The Kuiyang-ST2000 deep-towed high-resolution multichannel seismic system was designed by the First Institute of Oceanography,Ministry of Natural Resources(FIO,MNR).The system is mainly composed of a plasma spark source(source level:216 dB,main frequency:750 Hz,frequency bandwidth:150-1200 Hz)and a towed hydrophone streamer with 48 channels.Because the source and the towed hydrophone streamer are constantly moving according to the towing configuration,the accurate positioning of the towing hydrophone array and the moveout correction of deep-towed multichannel seismic data processing before imaging are challenging.Initially,according to the characteristics of the system and the towing streamer shape in deep water,travel-time positioning method was used to construct the hydrophone streamer shape,and the results were corrected by using the polynomial curve fitting method.Then,a new data-processing workflow for Kuiyang-ST2000 system data was introduced,mainly including float datum setting,residual static correction,phase-based moveout correction,which allows the imaging algorithms of conventional marine seismic data processing to extend to deep-towed seismic data.We successfully applied the Kuiyang-ST2000 system and methodology of data processing to a gas hydrate survey of the Qiongdongnan and Shenhu areas in the South China Sea,and the results show that the profile has very high vertical and lateral resolutions(0.5 m and 8 m,respectively),which can provide full and accurate details of gas hydrate-related and geohazard sedimentary and structural features in the South China Sea.展开更多
With the continued development of multiple Global Navigation Satellite Systems(GNSS)and the emergence of various frequencies,UnDifferenced and UnCombined(UDUC)data processing has become an increasingly attractive opti...With the continued development of multiple Global Navigation Satellite Systems(GNSS)and the emergence of various frequencies,UnDifferenced and UnCombined(UDUC)data processing has become an increasingly attractive option.In this contribution,we provide an overview of the current status of UDUC GNSS data processing activities in China.These activities encompass the formulation of Precise Point Positioning(PPP)models and PPP-Real-Time Kinematic(PPP-RTK)models for processing single-station and multi-station GNSS data,respectively.Regarding single-station data processing,we discuss the advancements in PPP models,particularly the extension from a single system to multiple systems,and from dual frequencies to single and multiple frequencies.Additionally,we introduce the modified PPP model,which accounts for the time variation of receiver code biases,a departure from the conventional PPP model that typically assumes these biases to be time-constant.In the realm of multi-station PPP-RTK data processing,we introduce the ionosphere-weighted PPP-RTK model,which enhances the model strength by considering the spatial correlation of ionospheric delays.We also review the phase-only PPP-RTK model,designed to mitigate the impact of unmodelled code-related errors.Furthermore,we explore GLONASS PPP-RTK,achieved through the application of the integer-estimable model.For large-scale network data processing,we introduce the all-in-view PPP-RTK model,which alleviates the strict common-view requirement at all receivers.Moreover,we present the decentralized PPP-RTK data processing strategy,designed to improve computational efficiency.Overall,this work highlights the various advancements in UDUC GNSS data processing,providing insights into the state-of-the-art techniques employed in China to achieve precise GNSS applications.展开更多
The general computer-aided design (CAD) software cannot meet the mould design requirement of the autoclave process for composites, because many parameters such as temperature and pressure should be considered in the...The general computer-aided design (CAD) software cannot meet the mould design requirement of the autoclave process for composites, because many parameters such as temperature and pressure should be considered in the mould design process, in addition to the material and geometry of the part. A framed-mould computer-aided design system (FMCAD) used in the autoclave moulding process is proposed in this paper. A function model of the software is presented, in which influence factors such as part structure, mould structure, and process parameters are considered; a design model of the software is established using object oriented (O-O) technology to integrate the stiffness calculation, temperature field calculation, and deformation field calculation of mould in the design, and in the design model, a hybrid model of mould based on calculation feature and form feature is presented to support those calculations. A prototype system is developed, in which a mould design process wizard is built to integrate the input information, calculation, analysis, data storage, display, and design results of mould design. Finally, three design examples are used to verify the prototype.展开更多
The processing of measuri ng data plays an important role in reverse engineering. Based on grey system the ory, we first propose some methods to the processing of measuring data in revers e engineering. The measured d...The processing of measuri ng data plays an important role in reverse engineering. Based on grey system the ory, we first propose some methods to the processing of measuring data in revers e engineering. The measured data usually have some abnormalities. When the abnor mal data are eliminated by filtering, blanks are created. The grey generation an d GM(1,1) are used to create new data for these blanks. For the uneven data sequ en ce created by measuring error, the mean generation is used to smooth it and then the stepwise and smooth generations are used to improve the data sequence.展开更多
To solve the query processing correctness problem for semantic-based relational data integration,the semantics of SAPRQL(simple protocol and RDF query language) queries is defined.In the course of query rewriting,al...To solve the query processing correctness problem for semantic-based relational data integration,the semantics of SAPRQL(simple protocol and RDF query language) queries is defined.In the course of query rewriting,all relative tables are found and decomposed into minimal connectable units.Minimal connectable units are joined according to semantic queries to produce the semantically correct query plans.Algorithms for query rewriting and transforming are presented.Computational complexity of the algorithms is discussed.Under the worst case,the query decomposing algorithm can be finished in O(n2) time and the query rewriting algorithm requires O(nm) time.And the performance of the algorithms is verified by experiments,and experimental results show that when the length of query is less than 8,the query processing algorithms can provide satisfactory performance.展开更多
Data processing of small samples is an important and valuable research problem in the electronic equipment test. Because it is difficult and complex to determine the probability distribution of small samples, it is di...Data processing of small samples is an important and valuable research problem in the electronic equipment test. Because it is difficult and complex to determine the probability distribution of small samples, it is difficult to use the traditional probability theory to process the samples and assess the degree of uncertainty. Using the grey relational theory and the norm theory, the grey distance information approach, which is based on the grey distance information quantity of a sample and the average grey distance information quantity of the samples, is proposed in this article. The definitions of the grey distance information quantity of a sample and the average grey distance information quantity of the samples, with their characteristics and algorithms, are introduced. The correlative problems, including the algorithm of estimated value, the standard deviation, and the acceptance and rejection criteria of the samples and estimated results, are also proposed. Moreover, the information whitening ratio is introduced to select the weight algorithm and to compare the different samples. Several examples are given to demonstrate the application of the proposed approach. The examples show that the proposed approach, which has no demand for the probability distribution of small samples, is feasible and effective.展开更多
As the key ion source component of nuclear fusion auxiliary heating devices, the radio frequency (RF) ion source is developed and applied gradually to offer a source plasma with the advantages of ease of control and...As the key ion source component of nuclear fusion auxiliary heating devices, the radio frequency (RF) ion source is developed and applied gradually to offer a source plasma with the advantages of ease of control and high reliability. In addition, it easily achieves long-pulse steady-state operation. During the process of the development and testing of the RF ion source, a lot of original experimental data will be generated. Therefore, it is necessary to develop a stable and reliable computer data acquisition and processing application system for realizing the functions of data acquisition, storage, access, and real-time monitoring. In this paper, the development of a data acquisition and processing application system for the RF ion source is presented. The hardware platform is based on the PXI system and the software is programmed on the LabVIEW development environment. The key technologies that are used for the implementation of this software programming mainly include the long-pulse data acquisition technology, multi- threading processing technology, transmission control communication protocol, and the Lempel-Ziv-Oberhumer data compression algorithm. Now, this design has been tested and applied on the RF ion source. The test results show that it can work reliably and steadily. With the help of this design, the stable plasma discharge data of the RF ion source are collected, stored, accessed, and monitored in real-time. It is shown that it has a very practical application significance for the RF experiments.展开更多
The High Precision Magnetometer(HPM) on board the China Seismo-Electromagnetic Satellite(CSES) allows highly accurate measurement of the geomagnetic field; it includes FGM(Fluxgate Magnetometer) and CDSM(Coupled Dark ...The High Precision Magnetometer(HPM) on board the China Seismo-Electromagnetic Satellite(CSES) allows highly accurate measurement of the geomagnetic field; it includes FGM(Fluxgate Magnetometer) and CDSM(Coupled Dark State Magnetometer)probes. This article introduces the main processing method, algorithm, and processing procedure of the HPM data. First, the FGM and CDSM probes are calibrated according to ground sensor data. Then the FGM linear parameters can be corrected in orbit, by applying the absolute vector magnetic field correction algorithm from CDSM data. At the same time, the magnetic interference of the satellite is eliminated according to ground-satellite magnetic test results. Finally, according to the characteristics of the magnetic field direction in the low latitude region, the transformation matrix between FGM probe and star sensor is calibrated in orbit to determine the correct direction of the magnetic field. Comparing the magnetic field data of CSES and SWARM satellites in five continuous geomagnetic quiet days, the difference in measurements of the vector magnetic field is about 10 nT, which is within the uncertainty interval of geomagnetic disturbance.展开更多
The data processing mode is vital to the performance of an entire coalmine gas early-warning system, especially in real-time performance. Our objective was to present the structural features of coalmine gas data, so t...The data processing mode is vital to the performance of an entire coalmine gas early-warning system, especially in real-time performance. Our objective was to present the structural features of coalmine gas data, so that the data could be processed at different priority levels in C language. Two different data processing models, one with priority and the other without priority, were built based on queuing theory. Their theoretical formulas were determined via a M/M/I model in order to calculate average occupation time of each measuring point in an early-warning program. We validated the model with the gas early-warning system of the Huaibei Coalmine Group Corp. The results indicate that the average occupation time for gas data processing by using the queuing system model with priority is nearly 1/30 of that of the model without priority.展开更多
A novel technique for automatic seismic data processing using both integral and local feature of seismograms was presented in this paper. Here, the term integral feature of seismograms refers to feature which may depi...A novel technique for automatic seismic data processing using both integral and local feature of seismograms was presented in this paper. Here, the term integral feature of seismograms refers to feature which may depict the shape of the whole seismograms. However, unlike some previous efforts which completely abandon the DIAL approach, i.e., signal detection, phase identifi- cation, association, and event localization, and seek to use envelope cross-correlation to detect seismic events directly, our technique keeps following the DIAL approach, but in addition to detect signals corresponding to individual seismic phases, it also detects continuous wave-trains and explores their feature for phase-type identification and signal association. More concrete ideas about how to define wave-trains and combine them with various detections, as well as how to measure and utilize their feature in the seismic data processing were expatiated in the paper. This approach has been applied to the routine data processing by us for years, and test results for a 16 days' period using data from the Xinjiang seismic station network were presented. The automatic processing results have fairly low false and missed event rate simultaneously, showing that the new technique has good application prospects for improvement of the automatic seismic data processing.展开更多
基金supported by National Natural Sciences Foundation of China(No.62271165,62027802,62201307)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030297)+2 种基金the Shenzhen Science and Technology Program ZDSYS20210623091808025Stable Support Plan Program GXWD20231129102638002the Major Key Project of PCL(No.PCL2024A01)。
文摘Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In existing technologies,the efficiency of big data applications(BDAs)in distributed systems hinges on the stable-state and low-latency links between worker nodes.However,LMCNs with high-dynamic nodes and long-distance links can not provide the above conditions,which makes the performance of OBDP hard to be intuitively measured.To bridge this gap,a multidimensional simulation platform is indispensable that can simulate the network environment of LMCNs and put BDAs in it for performance testing.Using STK's APIs and parallel computing framework,we achieve real-time simulation for thousands of satellite nodes,which are mapped as application nodes through software defined network(SDN)and container technologies.We elaborate the architecture and mechanism of the simulation platform,and take the Starlink and Hadoop as realistic examples for simulations.The results indicate that LMCNs have dynamic end-to-end latency which fluctuates periodically with the constellation movement.Compared to ground data center networks(GDCNs),LMCNs deteriorate the computing and storage job throughput,which can be alleviated by the utilization of erasure codes and data flow scheduling of worker nodes.
文摘A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for determining band-pass filter parameters based on signal-to-noise ratio gain,smoothness index,and cross-correlation coefficient is designed using the Chebyshev optimal consistent approximation theory.Additionally,a wavelet denoising evaluation function is constructed,with the dmey wavelet basis function identified as most effective for processing gravity gradient data.The results of hard-in-the-loop simulation and prototype experiments show that the proposed processing method has shown a 14%improvement in the measurement variance of gravity gradient signals,and the measurement accuracy has reached within 4E,compared to other commonly used methods,which verifies that the proposed method effectively removes noise from the gradient signals,improved gravity gradiometry accuracy,and has certain technical insights for high-precision airborne gravity gradiometry.
基金supported by China Southern Power Grid Technology Project under Grant 03600KK52220019(GDKJXM20220253).
文摘The convergence of Internet of Things(IoT),5G,and cloud collaboration offers tailored solutions to the rigorous demands of multi-flow integrated energy aggregation dispatch data processing.While generative adversarial networks(GANs)are instrumental in resource scheduling,their application in this domain is impeded by challenges such as convergence speed,inferior optimality searching capability,and the inability to learn from failed decision making feedbacks.Therefore,a cloud-edge collaborative federated GAN-based communication and computing resource scheduling algorithm with long-term constraint violation sensitiveness is proposed to address these challenges.The proposed algorithm facilitates real-time,energy-efficient data processing by optimizing transmission power control,data migration,and computing resource allocation.It employs federated learning for global parameter aggregation to enhance GAN parameter updating and dynamically adjusts GAN learning rates and global aggregation weights based on energy consumption constraint violations.Simulation results indicate that the proposed algorithm effectively reduces data processing latency,energy consumption,and convergence time.
基金funded by the National Natural Science Foundation of China(NSFC,Nos.12373086 and 12303082)CAS“Light of West China”Program+2 种基金Yunnan Revitalization Talent Support Program in Yunnan ProvinceNational Key R&D Program of ChinaGravitational Wave Detection Project No.2022YFC2203800。
文摘Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results.
基金supported by the National Natural Science Foundation of China(22178190)。
文摘In response to the lack of reliable physical parameters in the process simulation of the butadiene extraction,a large amount of phase equilibrium data were collected in the context of the actual process of butadiene production by acetonitrile.The accuracy of five prediction methods,UNIFAC(UNIQUAC Functional-group Activity Coefficients),UNIFAC-LL,UNIFAC-LBY,UNIFAC-DMD and COSMO-RS,applied to the butadiene extraction process was verified using partial phase equilibrium data.The results showed that the UNIFAC-DMD method had the highest accuracy in predicting phase equilibrium data for the missing system.COSMO-RS-predicted multiple systems showed good accuracy,and a large number of missing phase equilibrium data were estimated using the UNIFAC-DMD method and COSMO-RS method.The predicted phase equilibrium data were checked for consistency.The NRTL-RK(non-Random Two Liquid-Redlich-Kwong Equation of State)and UNIQUAC thermodynamic models were used to correlate the phase equilibrium data.Industrial device simulations were used to verify the accuracy of the thermodynamic model applied to the butadiene extraction process.The simulation results showed that the average deviations of the simulated results using the correlated thermodynamic model from the actual values were less than 2%compared to that using the commercial simulation software,Aspen Plus and its database.The average deviation was much smaller than that of the simulations using the Aspen Plus database(>10%),indicating that the obtained phase equilibrium data are highly accurate and reliable.The best phase equilibrium data and thermodynamic model parameters for butadiene extraction are provided.This improves the accuracy and reliability of the design,optimization and control of the process,and provides a basis and guarantee for developing a more environmentally friendly and economical butadiene extraction process.
基金Scientific Research Deanship has funded this project at the University of Ha’il–Saudi Arabia Ha’il–Saudi Arabia through project number RG-21104.
文摘In today’s world,image processing techniques play a crucial role in the prognosis and diagnosis of various diseases due to the development of several precise and accurate methods for medical images.Automated analysis of medical images is essential for doctors,as manual investigation often leads to inter-observer variability.This research aims to enhance healthcare by enabling the early detection of diabetic retinopathy through an efficient image processing framework.The proposed hybridized method combines Modified Inertia Weight Particle Swarm Optimization(MIWPSO)and Fuzzy C-Means clustering(FCM)algorithms.Traditional FCM does not incorporate spatial neighborhood features,making it highly sensitive to noise,which significantly affects segmentation output.Our method incorporates a modified FCM that includes spatial functions in the fuzzy membership matrix to eliminate noise.The results demonstrate that the proposed FCM-MIWPSO method achieves highly precise and accurate medical image segmentation.Furthermore,segmented images are classified as benign or malignant using the Decision Tree-Based Temporal Association Rule(DT-TAR)Algorithm.Comparative analysis with existing state-of-the-art models indicates that the proposed FCM-MIWPSO segmentation technique achieves a remarkable accuracy of 98.42%on the dataset,highlighting its significant impact on improving diagnostic capabilities in medical imaging.
文摘In order to obtain high-precision GPS control point results and provide high-precision known points for various projects,this study uses a variety of mature GPS post-processing software to process the observation data of the GPS control network of Guanyinge Reservoir,and compares the results obtained by several kinds of software.According to the test results,the reasons for the accuracy differences between different software are analyzed,and the optimal results are obtained in the analysis and comparison.The purpose of this paper is to provide useful reference for GPS software users to process data.
基金funding from the“Talent Introduction Scientific Research Start-Up Fund”of Shandong University of Science and Technology(Grant number 0104060510217)the“Open Fund of State Key Laboratory of Geodesy and Earth’s Dynamics”(Grant number SKLGED2021-3-5)。
文摘Since 2008 a network of five sea-level monitoring stations was progressively installed in French Polynesia.The stations are autonomous and data,collected at a sampling rate of 1 or 2 min,are not only recorded locally,but also transferred in real time by a radio-link to the NOAA through the GOES satellite.The new ET34-ANA-V80 version of ETERNA,initially developed for Earth Tides analysis,is now able to analyze ocean tides records.Through a two-step validation scheme,we took advantage of the flexibility of this new version,operated in conjunction with the preprocessing facilities of the Tsoft software,to recover co rrected data series able to model sea-level variations after elimination of the ocean tides signal.We performed the tidal analysis of the tide gauge data with the highest possible selectivity(optimal wave grouping)and a maximum of additional terms(shallow water constituents).Our goal was to provide corrected data series and modelled ocean tides signal to compute tide-free sea-level variations as well as tidal prediction models with centimeter precision.We also present in this study the characteristics of the ocean tides in French Polynesia and preliminary results concerning the non-tidal variations of the sea level concerning the tide gauge setting.
基金supported in part by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2019R1A2C1006159)and(NRF-2021R1A6A1A03039493)by the 2021 Yeungnam University Research Grant.
文摘The networks are fundamental to our modern world and they appear throughout science and society.Access to a massive amount of data presents a unique opportunity to the researcher’s community.As networks grow in size the complexity increases and our ability to analyze them using the current state of the art is at severe risk of failing to keep pace.Therefore,this paper initiates a discussion on graph signal processing for large-scale data analysis.We first provide a comprehensive overview of core ideas in Graph signal processing(GSP)and their connection to conventional digital signal processing(DSP).We then summarize recent developments in developing basic GSP tools,including methods for graph filtering or graph learning,graph signal,graph Fourier transform(GFT),spectrum,graph frequency,etc.Graph filtering is a basic task that allows for isolating the contribution of individual frequencies and therefore enables the removal of noise.We then consider a graph filter as a model that helps to extend the application of GSP methods to large datasets.To show the suitability and the effeteness,we first created a noisy graph signal and then applied it to the filter.After several rounds of simulation results.We see that the filtered signal appears to be smoother and is closer to the original noise-free distance-based signal.By using this example application,we thoroughly demonstrated that graph filtration is efficient for big data analytics.
基金The National Natural Science Foundation of China under contract No.42206033the Marine Geological Survey Program of China Geological Survey under contract No.DD20221706+1 种基金the Research Foundation of National Engineering Research Center for Gas Hydrate Exploration and Development,Innovation Team Project,under contract No.2022GMGSCXYF41003the Scientific Research Fund of the Second Institute of Oceanography,Ministry of Natural Resources,under contract No.JG2006.
文摘The current velocity observation of LADCP(Lowered Acoustic Doppler Current Profiler)has the advantages of a large vertical range of observation and high operability compared with traditional current measurement methods,and is being widely used in the field of ocean observation.Shear and inverse methods are now commonly used by the international marine community to process LADCP data and calculate ocean current profiles.The two methods have their advantages and shortcomings.The shear method calculates the value of current shear more accurately,while the accuracy in an absolute value of the current is lower.The inverse method calculates the absolute value of the current velocity more accurately,but the current shear is less accurate.Based on the shear method,this paper proposes a layering shear method to calculate the current velocity profile by“layering averaging”,and proposes corresponding current calculation methods according to the different types of problems in several field observation data from the western Pacific,forming an independent LADCP data processing system.The comparison results have shown that the layering shear method can achieve the same effect as the inverse method in the calculation of the absolute value of current velocity,while retaining the advantages of the shear method in the calculation of a value of the current shear.
基金Supported by the National Key R&D Program of China(No.2016YFC0303900)the Laoshan Laboratory(Nos.MGQNLM-KF201807,LSKJ202203604)the National Natural Science Foundation of China(No.42106072)。
文摘The Kuiyang-ST2000 deep-towed high-resolution multichannel seismic system was designed by the First Institute of Oceanography,Ministry of Natural Resources(FIO,MNR).The system is mainly composed of a plasma spark source(source level:216 dB,main frequency:750 Hz,frequency bandwidth:150-1200 Hz)and a towed hydrophone streamer with 48 channels.Because the source and the towed hydrophone streamer are constantly moving according to the towing configuration,the accurate positioning of the towing hydrophone array and the moveout correction of deep-towed multichannel seismic data processing before imaging are challenging.Initially,according to the characteristics of the system and the towing streamer shape in deep water,travel-time positioning method was used to construct the hydrophone streamer shape,and the results were corrected by using the polynomial curve fitting method.Then,a new data-processing workflow for Kuiyang-ST2000 system data was introduced,mainly including float datum setting,residual static correction,phase-based moveout correction,which allows the imaging algorithms of conventional marine seismic data processing to extend to deep-towed seismic data.We successfully applied the Kuiyang-ST2000 system and methodology of data processing to a gas hydrate survey of the Qiongdongnan and Shenhu areas in the South China Sea,and the results show that the profile has very high vertical and lateral resolutions(0.5 m and 8 m,respectively),which can provide full and accurate details of gas hydrate-related and geohazard sedimentary and structural features in the South China Sea.
基金National Natural Science Foundation of China(No.42022025)。
文摘With the continued development of multiple Global Navigation Satellite Systems(GNSS)and the emergence of various frequencies,UnDifferenced and UnCombined(UDUC)data processing has become an increasingly attractive option.In this contribution,we provide an overview of the current status of UDUC GNSS data processing activities in China.These activities encompass the formulation of Precise Point Positioning(PPP)models and PPP-Real-Time Kinematic(PPP-RTK)models for processing single-station and multi-station GNSS data,respectively.Regarding single-station data processing,we discuss the advancements in PPP models,particularly the extension from a single system to multiple systems,and from dual frequencies to single and multiple frequencies.Additionally,we introduce the modified PPP model,which accounts for the time variation of receiver code biases,a departure from the conventional PPP model that typically assumes these biases to be time-constant.In the realm of multi-station PPP-RTK data processing,we introduce the ionosphere-weighted PPP-RTK model,which enhances the model strength by considering the spatial correlation of ionospheric delays.We also review the phase-only PPP-RTK model,designed to mitigate the impact of unmodelled code-related errors.Furthermore,we explore GLONASS PPP-RTK,achieved through the application of the integer-estimable model.For large-scale network data processing,we introduce the all-in-view PPP-RTK model,which alleviates the strict common-view requirement at all receivers.Moreover,we present the decentralized PPP-RTK data processing strategy,designed to improve computational efficiency.Overall,this work highlights the various advancements in UDUC GNSS data processing,providing insights into the state-of-the-art techniques employed in China to achieve precise GNSS applications.
文摘The general computer-aided design (CAD) software cannot meet the mould design requirement of the autoclave process for composites, because many parameters such as temperature and pressure should be considered in the mould design process, in addition to the material and geometry of the part. A framed-mould computer-aided design system (FMCAD) used in the autoclave moulding process is proposed in this paper. A function model of the software is presented, in which influence factors such as part structure, mould structure, and process parameters are considered; a design model of the software is established using object oriented (O-O) technology to integrate the stiffness calculation, temperature field calculation, and deformation field calculation of mould in the design, and in the design model, a hybrid model of mould based on calculation feature and form feature is presented to support those calculations. A prototype system is developed, in which a mould design process wizard is built to integrate the input information, calculation, analysis, data storage, display, and design results of mould design. Finally, three design examples are used to verify the prototype.
文摘The processing of measuri ng data plays an important role in reverse engineering. Based on grey system the ory, we first propose some methods to the processing of measuring data in revers e engineering. The measured data usually have some abnormalities. When the abnor mal data are eliminated by filtering, blanks are created. The grey generation an d GM(1,1) are used to create new data for these blanks. For the uneven data sequ en ce created by measuring error, the mean generation is used to smooth it and then the stepwise and smooth generations are used to improve the data sequence.
基金Weaponry Equipment Pre-Research Foundation of PLA Equipment Ministry (No. 9140A06050409JB8102)Pre-Research Foundation of PLA University of Science and Technology (No. 2009JSJ11)
文摘To solve the query processing correctness problem for semantic-based relational data integration,the semantics of SAPRQL(simple protocol and RDF query language) queries is defined.In the course of query rewriting,all relative tables are found and decomposed into minimal connectable units.Minimal connectable units are joined according to semantic queries to produce the semantically correct query plans.Algorithms for query rewriting and transforming are presented.Computational complexity of the algorithms is discussed.Under the worst case,the query decomposing algorithm can be finished in O(n2) time and the query rewriting algorithm requires O(nm) time.And the performance of the algorithms is verified by experiments,and experimental results show that when the length of query is less than 8,the query processing algorithms can provide satisfactory performance.
文摘Data processing of small samples is an important and valuable research problem in the electronic equipment test. Because it is difficult and complex to determine the probability distribution of small samples, it is difficult to use the traditional probability theory to process the samples and assess the degree of uncertainty. Using the grey relational theory and the norm theory, the grey distance information approach, which is based on the grey distance information quantity of a sample and the average grey distance information quantity of the samples, is proposed in this article. The definitions of the grey distance information quantity of a sample and the average grey distance information quantity of the samples, with their characteristics and algorithms, are introduced. The correlative problems, including the algorithm of estimated value, the standard deviation, and the acceptance and rejection criteria of the samples and estimated results, are also proposed. Moreover, the information whitening ratio is introduced to select the weight algorithm and to compare the different samples. Several examples are given to demonstrate the application of the proposed approach. The examples show that the proposed approach, which has no demand for the probability distribution of small samples, is feasible and effective.
基金the NBI team and the partial support of National Natural Science Foundation of China (No. 61363019)National Natural Science Foundation of Qinghai Province (No. 2014-ZJ-718)
文摘As the key ion source component of nuclear fusion auxiliary heating devices, the radio frequency (RF) ion source is developed and applied gradually to offer a source plasma with the advantages of ease of control and high reliability. In addition, it easily achieves long-pulse steady-state operation. During the process of the development and testing of the RF ion source, a lot of original experimental data will be generated. Therefore, it is necessary to develop a stable and reliable computer data acquisition and processing application system for realizing the functions of data acquisition, storage, access, and real-time monitoring. In this paper, the development of a data acquisition and processing application system for the RF ion source is presented. The hardware platform is based on the PXI system and the software is programmed on the LabVIEW development environment. The key technologies that are used for the implementation of this software programming mainly include the long-pulse data acquisition technology, multi- threading processing technology, transmission control communication protocol, and the Lempel-Ziv-Oberhumer data compression algorithm. Now, this design has been tested and applied on the RF ion source. The test results show that it can work reliably and steadily. With the help of this design, the stable plasma discharge data of the RF ion source are collected, stored, accessed, and monitored in real-time. It is shown that it has a very practical application significance for the RF experiments.
基金supported by National Key Research and Development Program of China from MOST (2016YFB0501503)
文摘The High Precision Magnetometer(HPM) on board the China Seismo-Electromagnetic Satellite(CSES) allows highly accurate measurement of the geomagnetic field; it includes FGM(Fluxgate Magnetometer) and CDSM(Coupled Dark State Magnetometer)probes. This article introduces the main processing method, algorithm, and processing procedure of the HPM data. First, the FGM and CDSM probes are calibrated according to ground sensor data. Then the FGM linear parameters can be corrected in orbit, by applying the absolute vector magnetic field correction algorithm from CDSM data. At the same time, the magnetic interference of the satellite is eliminated according to ground-satellite magnetic test results. Finally, according to the characteristics of the magnetic field direction in the low latitude region, the transformation matrix between FGM probe and star sensor is calibrated in orbit to determine the correct direction of the magnetic field. Comparing the magnetic field data of CSES and SWARM satellites in five continuous geomagnetic quiet days, the difference in measurements of the vector magnetic field is about 10 nT, which is within the uncertainty interval of geomagnetic disturbance.
基金Project 70533050 supported by the National Natural Science Foundation of China
文摘The data processing mode is vital to the performance of an entire coalmine gas early-warning system, especially in real-time performance. Our objective was to present the structural features of coalmine gas data, so that the data could be processed at different priority levels in C language. Two different data processing models, one with priority and the other without priority, were built based on queuing theory. Their theoretical formulas were determined via a M/M/I model in order to calculate average occupation time of each measuring point in an early-warning program. We validated the model with the gas early-warning system of the Huaibei Coalmine Group Corp. The results indicate that the average occupation time for gas data processing by using the queuing system model with priority is nearly 1/30 of that of the model without priority.
文摘A novel technique for automatic seismic data processing using both integral and local feature of seismograms was presented in this paper. Here, the term integral feature of seismograms refers to feature which may depict the shape of the whole seismograms. However, unlike some previous efforts which completely abandon the DIAL approach, i.e., signal detection, phase identifi- cation, association, and event localization, and seek to use envelope cross-correlation to detect seismic events directly, our technique keeps following the DIAL approach, but in addition to detect signals corresponding to individual seismic phases, it also detects continuous wave-trains and explores their feature for phase-type identification and signal association. More concrete ideas about how to define wave-trains and combine them with various detections, as well as how to measure and utilize their feature in the seismic data processing were expatiated in the paper. This approach has been applied to the routine data processing by us for years, and test results for a 16 days' period using data from the Xinjiang seismic station network were presented. The automatic processing results have fairly low false and missed event rate simultaneously, showing that the new technique has good application prospects for improvement of the automatic seismic data processing.