期刊文献+
共找到2,021篇文章
< 1 2 102 >
每页显示 20 50 100
Modified Black Widow Optimization-Based Enhanced Threshold Energy Detection Technique for Spectrum Sensing in Cognitive Radio Networks
1
作者 R.Saravanan R.Muthaiah A.Rajesh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2339-2356,共18页
This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the second... This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the secondary user based on the square law.The proposed method is implemented with the signal transmission of multiple outputs-orthogonal frequency division multiplexing.Additionally,the proposed method is considered the dynamic detection threshold adjustments and energy identification spectrum sensing technique in cognitive radio systems.In the dynamic threshold,the signal ratio-based threshold is fixed.The threshold is computed by considering the Modified Black Widow Optimization Algorithm(MBWO).So,the proposed methodology is a combination of dynamic threshold detection and MBWO.The general threshold-based detection technique has different limitations such as the inability optimal signal threshold for determining the presence of the primary user signal.These limitations undermine the sensing accuracy of the energy identification technique.Hence,the ETBED technique is developed to enhance the energy efficiency of cognitive radio networks.The projected approach is executed and analyzed with performance and comparison analysis.The proposed method is contrasted with the conventional techniques of theWhale Optimization Algorithm(WOA)and GreyWolf Optimization(GWO).It indicated superior results,achieving a high average throughput of 2.2 Mbps and an energy efficiency of 3.8,outperforming conventional techniques. 展开更多
关键词 Cognitive radio network spectrum sensing noise uncertainty modified black widow optimization algorithm energy detection technique
下载PDF
Economic Power Dispatching from Distributed Generations: Review of Optimization Techniques
2
作者 Paramjeet Kaur Krishna Teerth Chaturvedi Mohan Lal Kolhe 《Energy Engineering》 EI 2024年第3期557-579,共23页
In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent... In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent and sustainable supply of electricity.A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability.The choice of optimization technique for economic power dispatching from DGs depends on a number of factors,such as the size and complexity of the power system,the availability of computational resources,and the specific requirements of the application.Optimization techniques for economic power dispatching from distributed generations(DGs)can be classified into two main categories:(i)Classical optimization techniques,(ii)Heuristic optimization techniques.In classical optimization techniques,the linear programming(LP)model is one of the most popular optimization methods.Utilizing the LP model,power demand and network constraints are met while minimizing the overall cost of generating electricity from DGs.This approach is efficient in determining the best DGs dispatch and is capable of handling challenging optimization issues in the large-scale system including renewables.The quadratic programming(QP)model,a classical optimization technique,is a further popular optimization method,to consider non-linearity.The QP model can take into account the quadratic cost of energy production,with consideration constraints like network capacity,voltage,and frequency.The metaheuristic optimization techniques are also used for economic power dispatching from DGs,which include genetic algorithms(GA),particle swarm optimization(PSO),and ant colony optimization(ACO).Also,Some researchers are developing hybrid optimization techniques that combine elements of classical and heuristic optimization techniques with the incorporation of droop control,predictive control,and fuzzy-based methods.These methods can deal with large-scale systems with many objectives and non-linear,non-convex optimization issues.The most popular approaches are the LP and QP models,while more difficult problems are handled using metaheuristic optimization techniques.In summary,in order to increase efficiency,reduce costs,and ensure a consistent supply of electricity,optimization techniques are essential tools used in economic power dispatching from DGs. 展开更多
关键词 Economic power dispatching distributed generations decentralized energy cost minimization optimization techniques
下载PDF
Optimization Techniques for GPU-Based Parallel Programming Models in High-Performance Computing
3
作者 Shuntao Tang Wei Chen 《信息工程期刊(中英文版)》 2024年第1期7-11,共5页
This study embarks on a comprehensive examination of optimization techniques within GPU-based parallel programming models,pivotal for advancing high-performance computing(HPC).Emphasizing the transition of GPUs from g... This study embarks on a comprehensive examination of optimization techniques within GPU-based parallel programming models,pivotal for advancing high-performance computing(HPC).Emphasizing the transition of GPUs from graphic-centric processors to versatile computing units,it delves into the nuanced optimization of memory access,thread management,algorithmic design,and data structures.These optimizations are critical for exploiting the parallel processing capabilities of GPUs,addressingboth the theoretical frameworks and practical implementations.By integrating advanced strategies such as memory coalescing,dynamic scheduling,and parallel algorithmic transformations,this research aims to significantly elevate computational efficiency and throughput.The findings underscore the potential of optimized GPU programming to revolutionize computational tasks across various domains,highlighting a pathway towards achieving unparalleled processing power and efficiency in HPC environments.The paper not only contributes to the academic discourse on GPU optimization but also provides actionable insights for developers,fostering advancements in computational sciences and technology. 展开更多
关键词 optimization techniques GPU-Based Parallel Programming Models High-Performance Computing
下载PDF
APPROXIMATION TECHNIQUES FOR APPLICATION OF GENETIC ALGORITHMS TO STRUCTURAL OPTIMIZATION 被引量:1
4
作者 金海波 丁运亮 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2003年第2期147-154,共8页
Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex str... Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model. 展开更多
关键词 approximation techniques segment approximation model genetic algorithms structural optimization sensitivity analysis
下载PDF
Application of several optimization techniques for estimating TBM advance rate in granitic rocks 被引量:24
5
作者 Danial Jahed Armaghani Mohammadreza Koopialipoor +1 位作者 Aminaton Marto Saffet Yagiz 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第4期779-789,共11页
This study aims to develop several optimization techniques for predicting advance rate of tunnel boring machine(TBM)in different weathered zones of granite.For this purpose,extensive field and laboratory studies have ... This study aims to develop several optimization techniques for predicting advance rate of tunnel boring machine(TBM)in different weathered zones of granite.For this purpose,extensive field and laboratory studies have been conducted along the 12,649 m of the Pahang-Selangor raw water transfer tunnel in Malaysia.Rock properties consisting of uniaxial compressive strength(UCS),Brazilian tensile strength(BTS),rock mass rating(RMR),rock quality designation(RQD),quartz content(q)and weathered zone as well as machine specifications including thrust force and revolution per minute(RPM)were measured to establish comprehensive datasets for optimization.Accordingly,to estimate the advance rate of TBM,two new hybrid optimization techniques,i.e.an artificial neural network(ANN)combined with both imperialist competitive algorithm(ICA)and particle swarm optimization(PSO),were developed for mechanical tunneling in granitic rocks.Further,the new hybrid optimization techniques were compared and the best one was chosen among them to be used for practice.To evaluate the accuracy of the proposed models for both testing and training datasets,various statistical indices including coefficient of determination(R^2),root mean square error(RMSE)and variance account for(VAF)were utilized herein.The values of R^2,RMSE,and VAF ranged in 0.939-0.961,0.022-0.036,and 93.899-96.145,respectively,with the PSO-ANN hybrid technique demonstrating the best performance.It is concluded that both the optimization techniques,i.e.PSO-ANN and ICA-ANN,could be utilized for predicting the advance rate of TBMs;however,the PSO-ANN technique is superior. 展开更多
关键词 Tunnel BORING machines (TBMs) ADVANCE rate Hybrid optimization techniques Particle SWARM optimization (PSO) Imperialist COMPETITIVE algorithm (ICA)
下载PDF
Applying Analytical Derivative and Sparse Matrix Techniques to Large-Scale Process Optimization Problems 被引量:2
6
作者 仲卫涛 邵之江 +1 位作者 张余岳 钱积新 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2000年第3期212-217,共6页
The performance of analytical derivative and sparse matrix techniques applied to a traditional dense sequential quadratic programming (SQP) is studied, and the strategy utilizing those techniques is also presented.Com... The performance of analytical derivative and sparse matrix techniques applied to a traditional dense sequential quadratic programming (SQP) is studied, and the strategy utilizing those techniques is also presented.Computational results on two typical chemical optimization problems demonstrate significant enhancement in efficiency, which shows this strategy is promising and suitable for large-scale process optimization problems. 展开更多
关键词 large-scale optimization open-equation sequential quadratic programming analytical derivative sparse matrix technique
下载PDF
Feasibility-Guided Constraint-Handling Techniques for Engineering Optimization Problems 被引量:1
7
作者 Muhammad Asif Jan Yasir Mahmood +6 位作者 Hidayat Ullah Khan Wali Khan Mashwani Muhammad Irfan Uddin Marwan Mahmoud Rashida Adeeb Khanum Ikramullah Noor Mast 《Computers, Materials & Continua》 SCIE EI 2021年第6期2845-2862,共18页
The particle swarm optimization(PSO)algorithm is an established nature-inspired population-based meta-heuristic that replicates the synchronizing movements of birds and sh.PSO is essentially an unconstrained algorithm... The particle swarm optimization(PSO)algorithm is an established nature-inspired population-based meta-heuristic that replicates the synchronizing movements of birds and sh.PSO is essentially an unconstrained algorithm and requires constraint handling techniques(CHTs)to solve constrained optimization problems(COPs).For this purpose,we integrate two CHTs,the superiority of feasibility(SF)and the violation constraint-handling(VCH),with a PSO.These CHTs distinguish feasible solutions from infeasible ones.Moreover,in SF,the selection of infeasible solutions is based on their degree of constraint violations,whereas in VCH,the number of constraint violations by an infeasible solution is of more importance.Therefore,a PSO is adapted for constrained optimization,yielding two constrained variants,denoted SF-PSO and VCH-PSO.Both SF-PSO and VCH-PSO are evaluated with respect to ve engineering problems:the Himmelblau’s nonlinear optimization,the welded beam design,the spring design,the pressure vessel design,and the three-bar truss design.The simulation results show that both algorithms are consistent in terms of their solutions to these problems,including their different available versions.Comparison of the SF-PSO and the VCHPSO with other existing algorithms on the tested problems shows that the proposed algorithms have lower computational cost in terms of the number of function evaluations used.We also report our disagreement with some unjust comparisons made by other researchers regarding the tested problems and their different variants. 展开更多
关键词 Constrained evolutionary optimization constraint handling techniques superiority of feasibility violation constraint-handling technique swarm based evolutionary algorithms particle swarm optimization engineering optimization proble
下载PDF
Computer-Aided Diagnosis for Tuberculosis Classification with Water Strider Optimization Algorithm 被引量:1
8
作者 José Escorcia-Gutierrez Roosvel Soto-Diaz +4 位作者 Natasha Madera Carlos Soto Francisco Burgos-Florez Alexander Rodríguez Romany F.Mansour 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1337-1353,共17页
Computer-aided diagnosis(CAD)models exploit artificial intelligence(AI)for chest X-ray(CXR)examination to identify the presence of tuberculosis(TB)and can improve the feasibility and performance of CXR for TB screenin... Computer-aided diagnosis(CAD)models exploit artificial intelligence(AI)for chest X-ray(CXR)examination to identify the presence of tuberculosis(TB)and can improve the feasibility and performance of CXR for TB screening and triage.At the same time,CXR interpretation is a time-consuming and subjective process.Furthermore,high resemblance among the radiological patterns of TB and other lung diseases can result in misdiagnosis.Therefore,computer-aided diagnosis(CAD)models using machine learning(ML)and deep learning(DL)can be designed for screening TB accurately.With this motivation,this article develops a Water Strider Optimization with Deep Transfer Learning Enabled Tuberculosis Classification(WSODTL-TBC)model on Chest X-rays(CXR).The presented WSODTL-TBC model aims to detect and classify TB on CXR images.Primarily,the WSODTL-TBC model undergoes image filtering techniques to discard the noise content and U-Net-based image segmentation.Besides,a pre-trained residual network with a two-dimensional convolutional neural network(2D-CNN)model is applied to extract feature vectors.In addition,the WSO algorithm with long short-term memory(LSTM)model was employed for identifying and classifying TB,where the WSO algorithm is applied as a hyperparameter optimizer of the LSTM methodology,showing the novelty of the work.The performance validation of the presented WSODTL-TBC model is carried out on the benchmark dataset,and the outcomes were investigated in many aspects.The experimental development pointed out the betterment of the WSODTL-TBC model over existing algorithms. 展开更多
关键词 computer-aided diagnosis water strider optimization deep learning chest x-rays transfer learning
下载PDF
Bi-Criteria Optimization Technique in Stochastic System Maintenance Allocation Problem 被引量:1
9
作者 Irfan Ali S. Suhaib Hasan 《American Journal of Operations Research》 2013年第1期17-29,共13页
In this paper, the problem of optimum allocation of repairable and replaceable components in a system is formulated as a Bi-objective stochastic non linear programming problem. The system maintenance time and cost are... In this paper, the problem of optimum allocation of repairable and replaceable components in a system is formulated as a Bi-objective stochastic non linear programming problem. The system maintenance time and cost are random variable and has gamma and normal distribution respectively. A Bi-criteria optimization technique, weighted Tchebycheff is used to obtain the optimum allocation for a system. A numerical example is also presented to illustrate the computational details. 展开更多
关键词 Selective Maintenance WEIGHTED Tchebycheff technique MULTI-CRITERIA optimization Stochastic PROGRAMMING CHANCE CONSTRAINED Modified E-MODEL System Reliability
下载PDF
Enhanced Cuckoo Search Optimization Technique for Skin Cancer Diagnosis Application
10
作者 S.Ayshwarya Lakshmi K.Anandavelu 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3403-3413,共11页
Skin cancer segmentation is a critical task in a clinical decision support system for skin cancer detection.The suggested enhanced cuckoo search based optimization model will be used to evaluate several metrics in the... Skin cancer segmentation is a critical task in a clinical decision support system for skin cancer detection.The suggested enhanced cuckoo search based optimization model will be used to evaluate several metrics in the skin cancer pic-ture segmentation process.Because time and resources are always limited,the proposed enhanced cuckoo search optimization algorithm is one of the most effec-tive strategies for dealing with global optimization difficulties.One of the most significant requirements is to design optimal solutions to optimize their use.There is no particular technique that can answer all optimization issues.The proposed enhanced cuckoo search optimization method indicates a constructive precision for skin cancer over with all image segmentation in computerized diagnosis.The accuracy of the proposed enhanced cuckoo search based optimization for melanoma has increased with a 23%to 29%improvement than other optimization algorithm.The total sensitivity and specificity attained in the proposed system are 99.56%and 99.73%respectively.The proposed method outperforms by offering accuracy of 99.26%in comparisons to other conventional methods.The proposed enhanced optimization technique achieved 98.75%,98.96%for Dice and Jaccard coefficient.The model trained using the suggested measure outperforms those trained using the conventional method in the segmentation of skin cancer picture data. 展开更多
关键词 Cukoo search optimization technique fitness function CANCER
下载PDF
Optimal Allocation of a Hybrid Wind Energy-Fuel Cell System Using Different Optimization Techniques in the Egyptian Distribution Network
11
作者 Adel A. Abou El-Ela Sohir M. Allam Nermine K. Shehata 《Energy and Power Engineering》 2021年第1期17-40,共24页
This paper presents an optimal proposed allocating procedure for hybrid wind energy combined with proton exchange membrane fuel cell (WE/PEMFC) system to improve the operation performance of the electrical distributio... This paper presents an optimal proposed allocating procedure for hybrid wind energy combined with proton exchange membrane fuel cell (WE/PEMFC) system to improve the operation performance of the electrical distribution system (EDS). Egypt has an excellent wind regime with wind speeds of about 10 m/s at many areas. The disadvantage of wind energy is its seasonal variations. So, if wind power is to supply a significant portion of the demand, either backup power or electrical energy storage (EES) system is needed to ensure that loads will be supplied in reliable way. So, the hybrid WE/PEMFC system is designed to completely supply a part of the Egyptian distribution system, in attempt to isolate it from the grid. However, the optimal allocation of the hybrid units is obtained, in order to enhance their benefits in the distribution networks. The critical buses that are necessary to install the hybrid WE/ PEMFC system, are chosen using sensitivity analysis. Then, the binary Crow search algorithm (BCSA), discrete Jaya algorithm (DJA) and binary particle swarm optimization (BPSO) techniques are proposed to determine the optimal operation of power systems using single and multi-objective functions (SOF/MOF). Then, the results of the three optimization techniques are compared with each other. Three sensitivity factors are employed in this paper, which are voltage sensitivity factor (VSF), active losses sensitivity factor (ALSF) and reactive losses sensitivity factor (RLSF). The effects of the sensitivity factors (SFs) on the SOF/MOF are studied. The improvement of voltage profile and minimizing active and reactive power losses of the EDS are considered as objective functions. Backward/forward sweep (BFS) method is used for the load flow calculations. The system load demand is predicted up to year 2022 for Mersi-Matrouh City as a part of Egyptian distribution network, and the design of the hybrid WE/PEMFC system is applied. The PEMFC system is designed considering simplified mathematical expressions. The economics of operation of both WE and PEMFC system are also presented. The results prove the capability of the proposed procedure to find the optimal allocation for the hybrid WE/PEMFC system to improve the system voltage profile and to minimize both active and reactive power losses for the EDS of Mersi-Matrough City. 展开更多
关键词 Wind Energy System Proton Exchange Membrane Fuel Cell Binary Crow Search Algorithm Discrete Jaya Algorithm Binary Particle Swarm optimization technique
下载PDF
Role of Examples and Interpretation of Results in Developing Multi-Objective Optimization Techniques
12
作者 Chandra Sen 《American Journal of Operations Research》 2020年第4期138-145,共8页
The paper evaluates the suitability of examples used in developing averaging techniques of multi-objective optimization (MOO). Most of the examples used for proposing these techniques were not suitable. The results of... The paper evaluates the suitability of examples used in developing averaging techniques of multi-objective optimization (MOO). Most of the examples used for proposing these techniques were not suitable. The results of these examples have also not been interpreted correctly. An appropriate example has also been solved with existing and improved averaging techniques of multi-objective optimization. 展开更多
关键词 Multi-Objective optimization Averaging Multi-Objective optimization techniques Improved Averaging Multi-Objective optimization techniques
下载PDF
Research on the New Mobile Development Paradigm based on HTML5 and Database Storage Optimization Techniques
13
作者 Ping Li 《International Journal of Technology Management》 2016年第4期57-60,共4页
In this paper, we conduct research on the new mobile development paradigm based on the HTML5 and core database storage optimization techniques. With the development of mobile Internet technology and the popularity of ... In this paper, we conduct research on the new mobile development paradigm based on the HTML5 and core database storage optimization techniques. With the development of mobile Internet technology and the popularity of smart mobile devices, mobile Internet is becoming more and more obvious in the importance of life, mobile application development is also becoming more and more important. The current mainstream development include the mode of traditional native application development, Web application development based on it, and based on the mixed mode of third-party framework development. The practice of software engineering, points out that productivity of the software breakthrough is the introduction of basic software reuse. Object-oriented framework is an important research content in modern software engineering. Under this basis, we propose the related optimization countermeasures for systematic modifi cation that is meaningful. 展开更多
关键词 HTML5 DATABASE STORAGE optimization MOBILE Development PARADIGM techniqueS
下载PDF
A Bound Heuristic Technique for Solving DRAMA Spares Optimizations
14
作者 LI Jian-ping KANG Jian-she(Department of Management Engineering, Shijiazhuang Mechanical Engineering College,Shijiazhuang, Hebei, 050003, China, E-mail:jp.Ji@sjz.col.com.cn) 《International Journal of Plant Engineering and Management》 1999年第2期442-453,共12页
This paper studies the solution technique to solve the DRAMA spares allocation optimization problem. DRAMA model is an analytic spare optimization model of a multi-item, multi-location, and two-echelon inventory syste... This paper studies the solution technique to solve the DRAMA spares allocation optimization problem. DRAMA model is an analytic spare optimization model of a multi-item, multi-location, and two-echelon inventory system. The computation of its system spares availability is much complicated. The objective function and constraint functions of DRAMA model could be written as the separable forms. A new bound heuristic algorithm has been presented by improving the bound heuristic algorithm for solving the reliability redundancy optimization problem (BHA in short). With the results, the proposed algorithm has been found to be more economical and effective than BHA to obtain the solutions of large DRAMA model. The new algorithm could be used to solve reliability redundancy optimization problems with the separable forms. 展开更多
关键词 spares optimization reliability optimization integer programming optimal redundancy bound technique heuristic method
下载PDF
An Improved Particle Swarm Optimization Algorithm Based on Ensemble Technique
15
作者 施彦 黄聪明 《Defence Technology(防务技术)》 SCIE EI CAS 2006年第4期310-314,共5页
An improved particle swarm optimization (PSO) algorithm based on ensemble technique is presented. The algorithm combines some previous best positions (pbest) of the particles to get an ensemble position (Epbest), whic... An improved particle swarm optimization (PSO) algorithm based on ensemble technique is presented. The algorithm combines some previous best positions (pbest) of the particles to get an ensemble position (Epbest), which is used to replace the global best position (gbest). It is compared with the standard PSO algorithm invented by Kennedy and Eberhart and some improved PSO algorithms based on three different benchmark functions. The simulation results show that the improved PSO based on ensemble technique can get better solutions than the standard PSO and some other improved algorithms under all test cases. 展开更多
关键词 机器学习 进化计算 粒子群优化算法 系综技术
下载PDF
Recent advances in cobalt phosphide-based materials for electrocatalytic water splitting:From catalytic mechanism and synthesis method to optimization design 被引量:1
16
作者 Rongrong Deng Mengwei Guo +1 位作者 Chaowu Wang Qibo Zhang 《Nano Materials Science》 EI CAS CSCD 2024年第2期139-173,共35页
Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high... Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high-performance electrocatalysts is crucial in making electrolyzed water technology commercially viable.Cobalt phosphide(Co-P)has emerged as a catalyst of high potential owing to its high catalytic activity and durability in water splitting.This paper systematically reviews the latest advances in the development of Co-P-based materials for use in water splitting.The essential effects of P in enhancing the catalytic performance of the hydrogen evolution reaction and oxygen evolution reaction are first outlined.Then,versatile synthesis techniques for Co-P electrocatalysts are summarized,followed by advanced strategies to enhance the electrocatalytic performance of Co-P materials,including heteroatom doping,composite construction,integration with well-conductive sub-strates,and structure control from the viewpoint of experiment.Along with these optimization strategies,the understanding of the inherent mechanism of enhanced catalytic performance is also discussed.Finally,some existing challenges in the development of highly active and stable Co-P-based materials are clarified,and pro-spective directions for prompting the wide commercialization of water electrolysis technology are proposed. 展开更多
关键词 Co-P electrocatalysts Water splitting Hydrogen production Catalytic mechanism Synthesis technique optimization design
下载PDF
Prediction of high-embankment settlement combining joint denoising technique and enhanced GWO-v-SVR method
17
作者 Qi Zhang Qian Su +2 位作者 Zongyu Zhang Zhixing Deng De Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期317-332,共16页
Reliable long-term settlement prediction of a high embankment relates to mountain infrastructure safety.This study developed a novel hybrid model(NHM)that combines a joint denoising technique with an enhanced gray wol... Reliable long-term settlement prediction of a high embankment relates to mountain infrastructure safety.This study developed a novel hybrid model(NHM)that combines a joint denoising technique with an enhanced gray wolf optimizer(EGWO)-n-support vector regression(n-SVR)method.High-embankment field measurements were preprocessed using the joint denoising technique,which in-cludes complete ensemble empirical mode decomposition,singular value decomposition,and wavelet packet transform.Furthermore,high-embankment settlements were predicted using the EGWO-n-SVR method.In this method,the standard gray wolf optimizer(GWO)was improved to obtain the EGWO to better tune the n-SVR model hyperparameters.The proposed NHM was then tested in two case studies.Finally,the influences of the data division ratio and kernel function on the EGWO-n-SVR forecasting performance and prediction efficiency were investigated.The results indicate that the NHM suppresses noise and restores details in high-embankment field measurements.Simultaneously,the NHM out-performs other alternative prediction methods in prediction accuracy and robustness.This demonstrates that the proposed NHM is effective in predicting high-embankment settlements with noisy field mea-surements.Moreover,the appropriate data division ratio and kernel function for EGWO-n-SVR are 7:3 and radial basis function,respectively. 展开更多
关键词 High embankment Settlement prediction Joint denoising technique Enhanced gray wolf optimizer Support vector regression
下载PDF
An Opposition-Based Learning-Based Search Mechanism for Flying Foxes Optimization Algorithm
18
作者 Chen Zhang Liming Liu +5 位作者 Yufei Yang Yu Sun Jiaxu Ning Yu Zhang Changsheng Zhang Ying Guo 《Computers, Materials & Continua》 SCIE EI 2024年第6期5201-5223,共23页
The flying foxes optimization(FFO)algorithm,as a newly introduced metaheuristic algorithm,is inspired by the survival tactics of flying foxes in heat wave environments.FFO preferentially selects the best-performing in... The flying foxes optimization(FFO)algorithm,as a newly introduced metaheuristic algorithm,is inspired by the survival tactics of flying foxes in heat wave environments.FFO preferentially selects the best-performing individuals.This tendency will cause the newly generated solution to remain closely tied to the candidate optimal in the search area.To address this issue,the paper introduces an opposition-based learning-based search mechanism for FFO algorithm(IFFO).Firstly,this paper introduces niching techniques to improve the survival list method,which not only focuses on the adaptability of individuals but also considers the population’s crowding degree to enhance the global search capability.Secondly,an initialization strategy of opposition-based learning is used to perturb the initial population and elevate its quality.Finally,to verify the superiority of the improved search mechanism,IFFO,FFO and the cutting-edge metaheuristic algorithms are compared and analyzed using a set of test functions.The results prove that compared with other algorithms,IFFO is characterized by its rapid convergence,precise results and robust stability. 展开更多
关键词 Flying foxes optimization(FFO)algorithm opposition-based learning niching techniques swarm intelligence metaheuristics evolutionary algorithms
下载PDF
Multi-Criterion Optimal Design of Automotive Door Based on Metamodeling Technique and Genetic Algorithm 被引量:1
19
作者 崔新涛 王树新 +1 位作者 毕凤荣 张连洪 《Transactions of Tianjin University》 EI CAS 2007年第3期169-174,共6页
A method for optimizing automotive doors under multiple criteria involving the side impact, stiffness, natural frequency, and structure weight is presented. Metamodeling technique is employed to construct approximatio... A method for optimizing automotive doors under multiple criteria involving the side impact, stiffness, natural frequency, and structure weight is presented. Metamodeling technique is employed to construct approximations to replace the high computational simulation models. The approximating functions for stiffness and natural frequency are constructed using Taylor series approximation. Three popular approximation techniques,i.e.polynomial response surface (PRS), stepwise regression (SR), and Kriging are studied on their accuracy in the construction of side impact functions. Uniform design is employed to sample the design space of the door impact analysis. The optimization problem is solved by a multi-objective genetic algorithm. It is found that SR technique is superior to PRS and Kriging techniques in terms of accuracy in this study. The numerical results demonstrate that the method successfully generates a well-spread Pareto optimal set. From this Pareto optimal set, decision makers can select the most suitable design according to the vehicle program and its application. 展开更多
关键词 automotive door multi-criterion optimal design uniform design metamodeling technique genetic algorithm
下载PDF
Location of Tibetan earthquakes──a nonlinear approach by a simplex optimized technique
20
作者 赵珠 丁志峰 +1 位作者 易桂喜 王建格 《Acta Seismologica Sinica(English Edition)》 CSCD 1994年第2期273-281,共9页
An advanced earthquake location technique presented by Prugger and Gendzwill (1988) was introduced in this paper. Its characteristics are: 1) adopting the difference between the mean value by observed arrival times an... An advanced earthquake location technique presented by Prugger and Gendzwill (1988) was introduced in this paper. Its characteristics are: 1) adopting the difference between the mean value by observed arrival times and the mean value by calculated travel times as the original reference time of event to calculate the traveltime residuals, thus resulting in the 'true' minimum of travel-time residuals; 2) choosing the L1 norm statistic of the residuals that is more suitable to earthquake location; 3) using a simplex optimized algorithm to search for the minimum residual value directly and iteratively, thus it does not require derivative calculations and avoids matrix inversions, it can be used for any velocity structures and different network systems and can solve out hypocentral parameters (λ, ,h) rapidly and exactly; 4) original time is further derived alone, so the trade-off between focal depth and original time is avoided. All these prominent features make us obtain more accurate Tibetan earthquake locations in the rare network condition by using this method. In this paper, we examined these schemes for our mobile and permanent networks in Tibet with artificial data sets,then using these methods, we determined the hypocentral parameters of partial events observed in the field work period of this project from July 1991 to September 1991 and the seven problematic earthquakes during 1989 - 1990. The hypocentral location errors may be estimated to be less than 3. 6 km approximately. The events with focal depth more than 40 km seem to be distributed in parallel to Qinghai-Sichuan-Yunnan arc structural zone. 展开更多
关键词 TIBETAN earthquake location average value normalization L1 norm simplex optimized technique
下载PDF
上一页 1 2 102 下一页 到第
使用帮助 返回顶部