Reservoir porous rocks usually consist of more than two types of matrix materials, forming a randomly heterogeneous material. The determination of the bulk modulus of such a medium is critical to the elastic wave disp...Reservoir porous rocks usually consist of more than two types of matrix materials, forming a randomly heterogeneous material. The determination of the bulk modulus of such a medium is critical to the elastic wave dispersion and attenuation. The elastic moduli for a simple matrix-inclusion model are theoretically analyzed. Most of the efforts assume a uniform inclusion concentration throughout the whole single-material matrix. However, the assumption is too strict in real-world rocks. A model is developed to estimate the moduli of a heterogeneous bimaterial skeleton, i.e., the host matrix and the patchy matrix. The elastic moduli, density, and permeability of the patchy matrix differ from those of the surrounding host matrix material. Both the matrices contain dispersed particle inclusions with different concentrations. By setting the elastic constant and density of the particles to be zero, a double-porosity medium is obtained. The bulk moduli for the whole system are derived with a multi-level effective modulus method based on Hashin's work. The proposed model improves the elastic modulus calculation of reservoir rocks, and is used to predict the kerogen content based on the wave velocity measured in laboratory. The results show pretty good consistency between the inversed total organic carbon and the measured total organic carbon for two sets of rock samples.展开更多
基金Project supported by the Open Project Program of Sinopec Key Laboratory of Multi-Component Seismic Technology(No.GSYKY-B09-33)the National Key Basic Research Program of China(973Program)(No.2014CB239006)the Basic Research Program of Community Networks Program Centers(CNPC)(No.2014A-3611)
文摘Reservoir porous rocks usually consist of more than two types of matrix materials, forming a randomly heterogeneous material. The determination of the bulk modulus of such a medium is critical to the elastic wave dispersion and attenuation. The elastic moduli for a simple matrix-inclusion model are theoretically analyzed. Most of the efforts assume a uniform inclusion concentration throughout the whole single-material matrix. However, the assumption is too strict in real-world rocks. A model is developed to estimate the moduli of a heterogeneous bimaterial skeleton, i.e., the host matrix and the patchy matrix. The elastic moduli, density, and permeability of the patchy matrix differ from those of the surrounding host matrix material. Both the matrices contain dispersed particle inclusions with different concentrations. By setting the elastic constant and density of the particles to be zero, a double-porosity medium is obtained. The bulk moduli for the whole system are derived with a multi-level effective modulus method based on Hashin's work. The proposed model improves the elastic modulus calculation of reservoir rocks, and is used to predict the kerogen content based on the wave velocity measured in laboratory. The results show pretty good consistency between the inversed total organic carbon and the measured total organic carbon for two sets of rock samples.