A hybrid model that is based on the Combination of keywords and concept was put forward. The hybrid model is built on vector space model and probabilistic reasoning network. It not only can exert the advantages of key...A hybrid model that is based on the Combination of keywords and concept was put forward. The hybrid model is built on vector space model and probabilistic reasoning network. It not only can exert the advantages of keywords retrieval and concept retrieval but also can compensate for their shortcomings. Their parameters can be adjusted according to different usage in order to accept the best information retrieval result, and it has been proved by our experiments.展开更多
To solve the unbalanced data problems of learning models for semantic concepts, an optimized modeling method based on the posterior probability support vector machine (PPSVM) is presented. A neighborbased posterior ...To solve the unbalanced data problems of learning models for semantic concepts, an optimized modeling method based on the posterior probability support vector machine (PPSVM) is presented. A neighborbased posterior probability estimator for visual concepts is provided. The proposed method has been applied in a high-level visual semantic concept classification system and the experiment results show that it results in enhanced performance over the baseline SVM models, as well as in improved robustness with respect to high-level visual semantic concept classification.展开更多
为了解决基于传统关键词的文本聚类算法没有考虑特征关键词之间的相关性,而导致文本向量概念表达不够准确,提出基于概念向量的文本聚类算法TCBCV(Text Clustering Based on Concept Vector),采用HowNet的概念属性,并利用语义场密度和义...为了解决基于传统关键词的文本聚类算法没有考虑特征关键词之间的相关性,而导致文本向量概念表达不够准确,提出基于概念向量的文本聚类算法TCBCV(Text Clustering Based on Concept Vector),采用HowNet的概念属性,并利用语义场密度和义原在概念树的权值选取合适的义原作为关键词的概念,实现关键词到概念的映射,不仅增加了文本之间的语义关系,而且降低了向量维度,将其应用于文本聚类,能够提高文本聚类效果。实验结果表明,该算法在文本聚类的准确率和召回率上都得到了较大的提高。展开更多
随着网络与信息技术的快速发展,导致网络上产生了大量的电子文本,而文本间的相似度计算是文本处理的一种重要手段。对于大规模的文本集,通常采用向量空间模型(vector space model,VSM)进行文本表示,但是该方法面临着文本向量维度较高及...随着网络与信息技术的快速发展,导致网络上产生了大量的电子文本,而文本间的相似度计算是文本处理的一种重要手段。对于大规模的文本集,通常采用向量空间模型(vector space model,VSM)进行文本表示,但是该方法面临着文本向量维度较高及文本语义相似度难以度量的问题。提出一种改进的文本相似度计算方法,从大量的特征空间中选择出具有代表性的元数据特征向量元素,以降低向量空间的维度;构建领域概念树并设计基于领域概念树的文本相似度算法,对领域概念中广泛存在的同义词进行处理,以提高文本之间语义相似度度量的性能。实验结果表明:通过降维和概念相似度计算可提高文本相似度计算的性能。展开更多
文摘A hybrid model that is based on the Combination of keywords and concept was put forward. The hybrid model is built on vector space model and probabilistic reasoning network. It not only can exert the advantages of keywords retrieval and concept retrieval but also can compensate for their shortcomings. Their parameters can be adjusted according to different usage in order to accept the best information retrieval result, and it has been proved by our experiments.
基金Sponsored by the Beijing Municipal Natural Science Foundation(4082027)
文摘To solve the unbalanced data problems of learning models for semantic concepts, an optimized modeling method based on the posterior probability support vector machine (PPSVM) is presented. A neighborbased posterior probability estimator for visual concepts is provided. The proposed method has been applied in a high-level visual semantic concept classification system and the experiment results show that it results in enhanced performance over the baseline SVM models, as well as in improved robustness with respect to high-level visual semantic concept classification.
文摘为了解决基于传统关键词的文本聚类算法没有考虑特征关键词之间的相关性,而导致文本向量概念表达不够准确,提出基于概念向量的文本聚类算法TCBCV(Text Clustering Based on Concept Vector),采用HowNet的概念属性,并利用语义场密度和义原在概念树的权值选取合适的义原作为关键词的概念,实现关键词到概念的映射,不仅增加了文本之间的语义关系,而且降低了向量维度,将其应用于文本聚类,能够提高文本聚类效果。实验结果表明,该算法在文本聚类的准确率和召回率上都得到了较大的提高。
文摘随着网络与信息技术的快速发展,导致网络上产生了大量的电子文本,而文本间的相似度计算是文本处理的一种重要手段。对于大规模的文本集,通常采用向量空间模型(vector space model,VSM)进行文本表示,但是该方法面临着文本向量维度较高及文本语义相似度难以度量的问题。提出一种改进的文本相似度计算方法,从大量的特征空间中选择出具有代表性的元数据特征向量元素,以降低向量空间的维度;构建领域概念树并设计基于领域概念树的文本相似度算法,对领域概念中广泛存在的同义词进行处理,以提高文本之间语义相似度度量的性能。实验结果表明:通过降维和概念相似度计算可提高文本相似度计算的性能。