The theory and method of system integration for the real-time monitoring of core rock-fill dam filling con- struction quality are studied in this paper. First, the importance analysis of system integration factors is ...The theory and method of system integration for the real-time monitoring of core rock-fill dam filling con- struction quality are studied in this paper. First, the importance analysis of system integration factors is carried out with the analytic hierarchy process. Then, according to the analysis result of integration factors, the conceptual model of system integration is built based on function integration, index integration, technology integration and information integration, the index structure of core rock-fill dam filling construction quality control is constructed and the method of function integration and technology integration is studied. The mathematical model of process monitoring is built according to monitoring objective, process and indexes. Research results have been applied in Nuozhadu core rock-fill dam construction management, realizing system integration through building appropriate monitoring work flow and comprehensive information platform of digital dam.展开更多
This study focuses on the hydrochemical characteristics of 47 water samples collected from thermal and cold springs that emerge from the Hammam Righa geothermal field, located in north-central Algeria. The aquifer tha...This study focuses on the hydrochemical characteristics of 47 water samples collected from thermal and cold springs that emerge from the Hammam Righa geothermal field, located in north-central Algeria. The aquifer that feeds these springs is mainly situated in the deeply fractured Jurassic limestone and dolomite of the Zaccar Mount. Measured discharge temperatures of the cold waters range from 16.0 to 26.5 ℃ and the hot waters from 32.1 to 68.2 ℃. All waters exhibited a near-neutral pH of 6.0-7.6. The thermal waters had a high total dis- solved solids (TDS) content of up to 2527 mg/l, while the TDS for cold waters was 659.0-852.0 mg/l. Chemical analyses suggest that two main types of water exist: hot waters in the upflow area of the Ca-Na-SO4 type (Ham- mam Righa) and cold waters in the recharge zone of the Ca-Na-HCO3 type (Zaccar Mount). Reservoir tempera- tures were estimated using silica geothermometers and fluid/mineral equilibria at 78, 92, and 95℃ for HR4, HR2, and HRI, respectively. Stable isotopic analyses of the δ18O and δD composition of the waters suggest that the thermal waters of Hammam Righa are of meteoric origin. We conclude that meteoric recharge infiltrates through the fractured dolomitic limestones of the Zaccar Mount and is conductively heated at a depth of 2.1-2.2 km. The hotwaters then interact at depth with Triassic evaporites located in the hydrothermal conduit (fault), giving rise to the Ca-Na-SO4 water type. As they ascend to the surface, the thermal waters mix with shallower Mg-rich ground- water, resulting in waters that plot in the immature water field in the Na-K-Mg diagram. The mixing trend between cold groundwaters from the recharge zone area (Zaccar Mount) and hot waters in the upflow area (Hammam Righa) is apparent via a chloride-enthalpy diagram that shows a mixing ratio of 22.6 〈 R 〈 29.2 %. We summa- rize these results with a geothermal conceptual model of the Hammam Righa geothermal field.展开更多
基金National Key Technology R&D Program in the 12th Five Year Plan of China (No. 2011BAB10B06)Independent Innovation Foundation of Tianjin University (No. 1102119)
文摘The theory and method of system integration for the real-time monitoring of core rock-fill dam filling con- struction quality are studied in this paper. First, the importance analysis of system integration factors is carried out with the analytic hierarchy process. Then, according to the analysis result of integration factors, the conceptual model of system integration is built based on function integration, index integration, technology integration and information integration, the index structure of core rock-fill dam filling construction quality control is constructed and the method of function integration and technology integration is studied. The mathematical model of process monitoring is built according to monitoring objective, process and indexes. Research results have been applied in Nuozhadu core rock-fill dam construction management, realizing system integration through building appropriate monitoring work flow and comprehensive information platform of digital dam.
基金the MEXT(Ministry of Education,Culture,Sports,Science and Techn ology,Japan)Ph.D.scholarship providing support for the first author during this studythe G-COE of Kyushu University for funding this research
文摘This study focuses on the hydrochemical characteristics of 47 water samples collected from thermal and cold springs that emerge from the Hammam Righa geothermal field, located in north-central Algeria. The aquifer that feeds these springs is mainly situated in the deeply fractured Jurassic limestone and dolomite of the Zaccar Mount. Measured discharge temperatures of the cold waters range from 16.0 to 26.5 ℃ and the hot waters from 32.1 to 68.2 ℃. All waters exhibited a near-neutral pH of 6.0-7.6. The thermal waters had a high total dis- solved solids (TDS) content of up to 2527 mg/l, while the TDS for cold waters was 659.0-852.0 mg/l. Chemical analyses suggest that two main types of water exist: hot waters in the upflow area of the Ca-Na-SO4 type (Ham- mam Righa) and cold waters in the recharge zone of the Ca-Na-HCO3 type (Zaccar Mount). Reservoir tempera- tures were estimated using silica geothermometers and fluid/mineral equilibria at 78, 92, and 95℃ for HR4, HR2, and HRI, respectively. Stable isotopic analyses of the δ18O and δD composition of the waters suggest that the thermal waters of Hammam Righa are of meteoric origin. We conclude that meteoric recharge infiltrates through the fractured dolomitic limestones of the Zaccar Mount and is conductively heated at a depth of 2.1-2.2 km. The hotwaters then interact at depth with Triassic evaporites located in the hydrothermal conduit (fault), giving rise to the Ca-Na-SO4 water type. As they ascend to the surface, the thermal waters mix with shallower Mg-rich ground- water, resulting in waters that plot in the immature water field in the Na-K-Mg diagram. The mixing trend between cold groundwaters from the recharge zone area (Zaccar Mount) and hot waters in the upflow area (Hammam Righa) is apparent via a chloride-enthalpy diagram that shows a mixing ratio of 22.6 〈 R 〈 29.2 %. We summa- rize these results with a geothermal conceptual model of the Hammam Righa geothermal field.