期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Evaluation method of cracking resistance of lightweight aggregate concrete 被引量:7
1
作者 季韬 张彬彬 +1 位作者 陈永波 庄一舟 《Journal of Central South University》 SCIE EI CAS 2014年第4期1607-1615,共9页
The cracking behavior of lightweight aggregate concrete(LWAC) was investigated by mechanical analysis, SEM and cracking-resistant test where a shrinkage-restrained ring with a clapboard was used. The relationship betw... The cracking behavior of lightweight aggregate concrete(LWAC) was investigated by mechanical analysis, SEM and cracking-resistant test where a shrinkage-restrained ring with a clapboard was used. The relationship between the ceramsite type and the cracking resistance of LWAC was built up and compared with that of normal-weight coarse aggregate concrete(NWAC). A new method was proposed to evaluate the cracking resistance of concrete, where the concepts of cracking coefficient ζt(t) and the evaluation index Acr(t) were proposed, and the development of micro-cracks and damage accumulation were recognized. For the concrete with an ascending cracking coefficient curve, the larger Acr(t) is, the lower cracking resistance of concrete is. For the concrete with a descending cracking coefficient curve, the larger Acr(t) is, the stronger the cracking resistance of concrete is. The evaluation results show that in the case of that all the three types of coarse aggregates in concrete are pre-soaked for 24 h, NWAC has the lowest cracking resistance, followed by the LWAC with lower water absorption capacity ceramsite and the LWAC with higher water absorption capacity ceramsite has the strongest cracking resistance. The proposed method has obvious advantages over the cracking age method, because it can evaluate the cracking behavior of concrete even if the concrete has not an observable crack. 展开更多
关键词 ceramsite type cracking resistance lightweight aggregate concrete evaluation index evaluation method
下载PDF
Reliable evaluation method of quality control for compressive strength of concrete
2
作者 CHEN Kuen-suan SUNG Wen-pei SHIH Ming-hsiang 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第8期836-843,共8页
Concrete in reinforced concrete structure (RC) is generally under significant compressive stress load. To guarantee required quality and ductility, various tests have to be conducted to measure the concrete’s compres... Concrete in reinforced concrete structure (RC) is generally under significant compressive stress load. To guarantee required quality and ductility, various tests have to be conducted to measure the concrete’s compressive strength based on ACI (American Concrete Institute) code. Investigations of recent devastating collapses of structures around the world showed that some of the collapses directly resulted from the poor quality of the concrete. The lesson learned from these tragedies is that guaranteeing high quality of concrete is one of the most important factors ensuring the safety of the reinforced concrete structure. In order to ensure high quality of concrete, a new method for analyzing and evaluating the concrete production process is called for. In this paper, the indices of fit and stable degree are proposed as basis to evaluate the fitness and stability of concrete’s compressive strength. These two indices are combined to define and evaluate the quality index of the compressive strength of concrete. Prin-ciples of statistics are used to derive the best estimators of these indices. Based on the outcome of the study, a concrete compres-sive strength quality control chart is proposed as a tool to help the evaluation process. Finally, a new evaluation procedure to assess the quality control capability of the individual concrete manufacturer is also proposed. 展开更多
关键词 Quality index of concrete The best estimators Quality control chart Evaluation criteria Fit degree of compressive strength of concrete Stable degree of compressive degree of concrete
下载PDF
Thermal and Stress Analysis of Early Age Concrete for Spread Footing
3
作者 丁红岩 张磊 +1 位作者 张浦阳 朱奇 《Transactions of Tianjin University》 EI CAS 2015年第6期477-483,共7页
The early age performance of spread footing, especially the growth of cracks, is deeply influenced by the heat of hydration of cement. In this paper, 3D finite element method(FEM)models are set up to analyze the tempe... The early age performance of spread footing, especially the growth of cracks, is deeply influenced by the heat of hydration of cement. In this paper, 3D finite element method(FEM)models are set up to analyze the temperature distribution and thermal stresses of the spread footing during the first seven days after concrete placement. The mechanical properties of early age concrete are calculated, which are further used in the FEM models. The possibilities of crack growth are estimated by the method of crack index. The crack indexes of quite a number of points are very close to the allowable limit of 1.0 during the last three days. It is also indicated that the influence of foundation ring on the thermal stresses of concrete can be neglected. 展开更多
关键词 mass concrete heat of hydration early age concrete thermal crack crack index
下载PDF
Identification of Connection Flexibility Effects Based on Load Testing of a Steel-Concrete Bridge
4
作者 Czeslaw Machelski Robert Toczkiewicz 《Journal of Civil Engineering and Architecture》 2012年第11期1504-1513,共10页
In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, doe... In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, does not provide full interaction of a steel beam and a concrete slab. This changes strain distribution in cross-sections of a composite girder and results in redistribution of internal forces in steel and concrete element. In the paper partial interaction index defined on the basis of a neutral axis position, which can be used for verification of steel-concrete interaction in real bridge structures rather than in specimens is proposed. The range of the index value changes, obtained during load testing of a typical steel-concrete composite beam bridge, is presented. The investigation was carried out on a motorway viaduct, consisting of two parallel structures. During the testing values of strains in girders under static and quasi-static loads were measured. The readings from the gauges were used to determine the index, characterizing composite action of the girders. Results of bridge testing under movable load, changing position along the bridge span is presented and obtained in-situ influence functions of strains and index values are commented in the paper. 展开更多
关键词 Abstract: In the case of composite girders an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs used commonly in bridge structures does not provide full interaction of a steel beam and a concrete slab. This changes strain distribution in cross-sections of a composite girder and results in redistribution of internal forces in steel and concrete element. In the paper partial interaction index defined on the basis of a neutral axis position which can be used for verification of steel-concrete interaction in real bridge structures rather Composite bridge partial interaction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部