In this paper, we study a generalized quasi-variational inequality (GQVI for short) with twomultivalued operators and two bifunctions in a Banach space setting. A coupling of the Tychonov fixedpoint principle and the ...In this paper, we study a generalized quasi-variational inequality (GQVI for short) with twomultivalued operators and two bifunctions in a Banach space setting. A coupling of the Tychonov fixedpoint principle and the Katutani-Ky Fan theorem for multivalued maps is employed to prove a new existencetheorem for the GQVI. We also study a nonlinear optimal control problem driven by the GQVI and givesufficient conditions ensuring the existence of an optimal control. Finally, we illustrate the applicability of thetheoretical results in the study of a complicated Oseen problem for non-Newtonian fluids with a nonmonotone andmultivalued slip boundary condition (i.e., a generalized friction constitutive law), a generalized leak boundarycondition, a unilateral contact condition of Signorini’s type and an implicit obstacle effect, in which themultivalued slip boundary condition is described by the generalized Clarke subgradient, and the leak boundarycondition is formulated by the convex subdifferential operator for a convex superpotential.展开更多
Various optimal boundary control problems for linear infinite order distributed hyperbolic systems involving constant time lags are considered. Constraints on controls are imposed. Necessary and sufficient optimality ...Various optimal boundary control problems for linear infinite order distributed hyperbolic systems involving constant time lags are considered. Constraints on controls are imposed. Necessary and sufficient optimality conditions for the Neumann problem with the quadratic performance functional are derived.展开更多
In this paper, we prove the existence theorems of locbal or global classical solutions to Stefan problems with various kinetic conditions at the free boundary.
In this paper we study the existence of solution for the differential equation of arbitrary ( fractional) orders,with the general form of internal nonlocal condition,The problem with nonlocal integral condition will b...In this paper we study the existence of solution for the differential equation of arbitrary ( fractional) orders,with the general form of internal nonlocal condition,The problem with nonlocal integral condition will be studied.展开更多
In this paper nonlinear boundary value problems for discontinuous delayed differen- tial equations are considered. Some existence and boundedness results of solutions are obtained via the method of upper and lower sol...In this paper nonlinear boundary value problems for discontinuous delayed differen- tial equations are considered. Some existence and boundedness results of solutions are obtained via the method of upper and lower solutions, which may be discontinuous. Our analysis can be applied to those phenomena from physics and control theory which have been successfully described by delayed differential equations with discontinuous functions, such as electric, pneu- matic, and hydraulic networks. It is also an important step to precede the design of control signals when finite-time or practical stability control are concerned.展开更多
The problems of optimal control (OCPs) related to PDEs are a very active area of research. These problems deal with the processes of mechanical engineering, heat aeronautics, physics, hydro and gas dynamics, the physi...The problems of optimal control (OCPs) related to PDEs are a very active area of research. These problems deal with the processes of mechanical engineering, heat aeronautics, physics, hydro and gas dynamics, the physics of plasma and other real life problems. In this paper, we deal with a class of the constrained OCP for parabolic systems. It is converted to new unconstrained OCP by adding a penalty function to the cost functional. The existence solution of the considering system of parabolic optimal control problem (POCP) is introduced. In this way, the uniqueness theorem for the solving POCP is introduced. Therefore, a theorem for the sufficient differentiability conditions has been proved.展开更多
In this paper we are concerned with the following nonlinear degenerate parabolic systems u_t=△x(gradψ(u))+D_xb(u)+f(x.t.u)with Dirichlet boundary conditions,where u,gradψ(u),b and f are vector valued functions and ...In this paper we are concerned with the following nonlinear degenerate parabolic systems u_t=△x(gradψ(u))+D_xb(u)+f(x.t.u)with Dirichlet boundary conditions,where u,gradψ(u),b and f are vector valued functions and xUnder some structure conditions on the terms of the systems,we have established theresults on existence and uniquence of global solutions of the systems.展开更多
We study the L^(2)-supercritical nonlinear Schrodinger equation(NLS) with a partial confinement,which is the limit case of the cigar-shaped model in Bose-Einstein condensate(BEC). By constructing a cross constrained v...We study the L^(2)-supercritical nonlinear Schrodinger equation(NLS) with a partial confinement,which is the limit case of the cigar-shaped model in Bose-Einstein condensate(BEC). By constructing a cross constrained variational problem and establishing the invariant manifolds of the evolution fow, we show a sharp condition for global existence.展开更多
基金This work is supported by the Youth Foundation, NSFC.
文摘In this paper, we get the existence result of the nontrivial weak solution (λ, u) of the following eigenvalue problem with natural growth conditions.
基金The first author was supported by the Guangxi Natural Science Foundation of China(Grant No.2021GXNSFFA196004)National Natural Science Foundation of China(Grant No.12001478)+4 种基金Horizon 2020 of the European Union(Grant No.823731 CONMECH)National Science Center of Poland(Grant No.2017/25/N/ST1/00611)The second author was supported by National Science Foundation of USA(Grant No.DMS 1720067)The third author was supported by the National Science Center of Poland(Grant No.2021/41/B/ST1/01636)the Ministry of Science and Higher Education of Poland(Grant Nos.4004/GGPJII/H2020/2018/0 and 440328/PnH2/2019)。
文摘In this paper, we study a generalized quasi-variational inequality (GQVI for short) with twomultivalued operators and two bifunctions in a Banach space setting. A coupling of the Tychonov fixedpoint principle and the Katutani-Ky Fan theorem for multivalued maps is employed to prove a new existencetheorem for the GQVI. We also study a nonlinear optimal control problem driven by the GQVI and givesufficient conditions ensuring the existence of an optimal control. Finally, we illustrate the applicability of thetheoretical results in the study of a complicated Oseen problem for non-Newtonian fluids with a nonmonotone andmultivalued slip boundary condition (i.e., a generalized friction constitutive law), a generalized leak boundarycondition, a unilateral contact condition of Signorini’s type and an implicit obstacle effect, in which themultivalued slip boundary condition is described by the generalized Clarke subgradient, and the leak boundarycondition is formulated by the convex subdifferential operator for a convex superpotential.
文摘Various optimal boundary control problems for linear infinite order distributed hyperbolic systems involving constant time lags are considered. Constraints on controls are imposed. Necessary and sufficient optimality conditions for the Neumann problem with the quadratic performance functional are derived.
文摘In this paper, we prove the existence theorems of locbal or global classical solutions to Stefan problems with various kinetic conditions at the free boundary.
文摘In this paper we study the existence of solution for the differential equation of arbitrary ( fractional) orders,with the general form of internal nonlocal condition,The problem with nonlocal integral condition will be studied.
基金Supported by the National Natural Science Foundation of China(Grants No.70703016 and No.10001024)Research Grant of the Business School of Nanjing University
文摘In this paper nonlinear boundary value problems for discontinuous delayed differen- tial equations are considered. Some existence and boundedness results of solutions are obtained via the method of upper and lower solutions, which may be discontinuous. Our analysis can be applied to those phenomena from physics and control theory which have been successfully described by delayed differential equations with discontinuous functions, such as electric, pneu- matic, and hydraulic networks. It is also an important step to precede the design of control signals when finite-time or practical stability control are concerned.
文摘The problems of optimal control (OCPs) related to PDEs are a very active area of research. These problems deal with the processes of mechanical engineering, heat aeronautics, physics, hydro and gas dynamics, the physics of plasma and other real life problems. In this paper, we deal with a class of the constrained OCP for parabolic systems. It is converted to new unconstrained OCP by adding a penalty function to the cost functional. The existence solution of the considering system of parabolic optimal control problem (POCP) is introduced. In this way, the uniqueness theorem for the solving POCP is introduced. Therefore, a theorem for the sufficient differentiability conditions has been proved.
基金The project supported by the Natural Science Foundation of FuJian Province of China
文摘In this paper we are concerned with the following nonlinear degenerate parabolic systems u_t=△x(gradψ(u))+D_xb(u)+f(x.t.u)with Dirichlet boundary conditions,where u,gradψ(u),b and f are vector valued functions and xUnder some structure conditions on the terms of the systems,we have established theresults on existence and uniquence of global solutions of the systems.
基金supported by the National Natural Science Foundation of China(No.11871138)。
文摘We study the L^(2)-supercritical nonlinear Schrodinger equation(NLS) with a partial confinement,which is the limit case of the cigar-shaped model in Bose-Einstein condensate(BEC). By constructing a cross constrained variational problem and establishing the invariant manifolds of the evolution fow, we show a sharp condition for global existence.