期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Analysis of Turbulence and Surface Growth Models on the Estimation of Soot Level in Ethylene Non-Premixed Flames 被引量:2
1
作者 Y.Yunardi Edi Munawar +3 位作者 Wahyu Rinaldi Asbar Razali Elwina Iskandar M.Fairweather 《Journal of Thermal Science》 SCIE EI CAS CSCD 2018年第1期78-88,共11页
Soot prediction in a combustion system has become a subject of attention, as many factors influence its accuracy. An accurate temperature prediction will likely yield better soot predictions, since the inception, grow... Soot prediction in a combustion system has become a subject of attention, as many factors influence its accuracy. An accurate temperature prediction will likely yield better soot predictions, since the inception, growth and de- struction of the soot are affected by the temperature. This paper reported the study on the influences of turbulence closure and surface growth models on the prediction of soot levels in turbulent flames. The results demonstrated that a substantial distinction was observed in terms of temperature predictions derived using the k-c and the Rey- nolds stress models, for the two ethylene flames studied here amongst the four types of surface growth rate model investigated, the assumption of the soot surface growth rate proportional to the particle number density, but inde- pendent on the surface area of soot particles,f(As) = pNs, yields in closest agreement with the radial data. Without any adjustment to the constants in the surface growth term, other approaches where the surface growth directly proportional to the surface area and square root of surface area, f (As) = As and f (A,) = √As, result in an un- der-prediction of soot volume fraction. These results suggest that predictions of soot volume fraction are sensitive to the modelling of surface growth. 展开更多
关键词 SOOT conditional moment closure COMBUSTION surface growth NON-PREMIXED turbulent flame
原文传递
Investigation of Detailed Kinetic Scheme Performance on Modelling of Turbulent Non-Premixed Sooting Flames 被引量:1
2
作者 Y.Yunardi D.Darmadi +1 位作者 H.Hisbullah M.Fairweather 《Journal of Thermal Science》 SCIE EI CAS CSCD 2011年第6期548-555,共8页
This paper presents the results of an application of a first-order conditional moment closure (CMC) approach coupled with a semi-empirical soot model to investigate the effect of various detailed combustion chemistr... This paper presents the results of an application of a first-order conditional moment closure (CMC) approach coupled with a semi-empirical soot model to investigate the effect of various detailed combustion chemistry schemes on soot formation and destruction in turbulent non-premixed flames. A two-equation soot model repre- senting soot particle nucleation, growth, coagulation and oxidation, was incorporated into the CMC model. The turbulent flow-field of both flames is described using the Favre-averaged fluid-flow equations, applying a stan- dard k-c turbulence model. A number of five reaction kinetic mechanisms having 50 - 100 species and 200 - 1000 elementary reactions called ABF, Miller-Bowman, GRI-Mech3.0, Warnatz, and Qin were employed to study the effect of combustion chemistry schemes on soot predictions. The results showed that of various kinetic schemes being studied, each yields similar accuracy in temperature prediction when compared with experimental data. With respect to soot prediction, the kinetic scheme containing benzene elementary reactions tends to result in a better prediction on soot concentrations in comparison to those contain no benzene elementary reactions. Among five kinetic mechanisms being studied, the Qin combustion scheme mechanism turned to yield the best prediction on both flame temperature and soot levels. 展开更多
关键词 SOOT conditional moment closure COMBUSTION kinetic scheme NON-PREMIXED turbulent flame
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部