The joint probability distribution of wind speed and significant wave height in the Bohai Bay was investigated by comparing the Gurnbel logistic model, the Gumbel-Hougaard (GH) copula function, and the Clayton copul...The joint probability distribution of wind speed and significant wave height in the Bohai Bay was investigated by comparing the Gurnbel logistic model, the Gumbel-Hougaard (GH) copula function, and the Clayton copula function. Twenty years of wind data from 1989 to 2008 were collected from the European Centre for Medium-Range Weather Forecasts (ECMWF) database and the blended wind data of the Quick Scatterometer (QSCAT) satellite data set and re-analysis data from the United States National Centers for Environmental Prediction (NCEP). Several typhoons were taken into account and merged with the background wind fields from the ECMWF or QSCAT/NCEP database. The 20-year data of significant wave height were calculated with the unstructured-grid version of the third-generation wind wave model Simulating WAves Nearshore (SWAN) under extreme wind process conditions. The Gumbel distribution was used for univariate and marginal distributions. The distribution parameters were estimated with the method of L-moments. Based on the marginal distributions, the joint probability distributions, the associated return periods, and the conditional probability distributions were obtained. The GH copula function was found to be optimal according to the ordinary least squares (OLS) test. The results show that wind waves are the prevailing type of wave in the Bohai Bay.展开更多
The ground and low-lying collective states of a rotating system of N=3 bosons harmonically confined in quasi-two-dimension and interacting via repulsive finite-range Gaussian potential is studied in weakly to moderate...The ground and low-lying collective states of a rotating system of N=3 bosons harmonically confined in quasi-two-dimension and interacting via repulsive finite-range Gaussian potential is studied in weakly to moderately interacting regime.The N-body Hamiltonian matrix is diagonalized in subspaces of quantized total angular momenta 0 ≤ L ≤ 4N to obtain the ground and low-lying eigenstates.Our numerical results show that breathing modes with N-body eigenenergy spacing of 2hω⊥,known to exist in strictly 2D system with zero-range(δ-function) interaction potential,may as well exist in quasi-2D system with finite-range Gaussian interaction potential.To gain an insight into the many-body states,the von Neumann entropy is calculated as a measure of quantum correlation and the conditional probability distribution is analyzed for the internal structure of the eigenstates.In the rapidly rotating regime the ground state in angular momentum subspaces L=(q/2)N(N-1) with q=2,4 is found to exhibit the anticorrelation structure suggesting that it may variationally be described by a Bose–Laughlin like state.We further observe that the first breathing mode exhibits features similar to the Bose–Laughlin state in having eigenenergy,von Neumann entropy and internal structure independent of interaction for the three-boson system considered here.On the contrary,for eigenstates lying between the Bose–Laughlin like ground state and the first breathing mode,values of eigenenergy,von Neumann entropy and internal structure are found to vary with interaction.展开更多
基金supported by the Science Fund for Creative Research Groups of the National Natural ScienceFoundation of China (Grant No. 51021004)the National High Technology Research and DevelopmentProgram of China (863 Program, Grants No. 2012AA112509 and 2012AA051702)
文摘The joint probability distribution of wind speed and significant wave height in the Bohai Bay was investigated by comparing the Gurnbel logistic model, the Gumbel-Hougaard (GH) copula function, and the Clayton copula function. Twenty years of wind data from 1989 to 2008 were collected from the European Centre for Medium-Range Weather Forecasts (ECMWF) database and the blended wind data of the Quick Scatterometer (QSCAT) satellite data set and re-analysis data from the United States National Centers for Environmental Prediction (NCEP). Several typhoons were taken into account and merged with the background wind fields from the ECMWF or QSCAT/NCEP database. The 20-year data of significant wave height were calculated with the unstructured-grid version of the third-generation wind wave model Simulating WAves Nearshore (SWAN) under extreme wind process conditions. The Gumbel distribution was used for univariate and marginal distributions. The distribution parameters were estimated with the method of L-moments. Based on the marginal distributions, the joint probability distributions, the associated return periods, and the conditional probability distributions were obtained. The GH copula function was found to be optimal according to the ordinary least squares (OLS) test. The results show that wind waves are the prevailing type of wave in the Bohai Bay.
文摘The ground and low-lying collective states of a rotating system of N=3 bosons harmonically confined in quasi-two-dimension and interacting via repulsive finite-range Gaussian potential is studied in weakly to moderately interacting regime.The N-body Hamiltonian matrix is diagonalized in subspaces of quantized total angular momenta 0 ≤ L ≤ 4N to obtain the ground and low-lying eigenstates.Our numerical results show that breathing modes with N-body eigenenergy spacing of 2hω⊥,known to exist in strictly 2D system with zero-range(δ-function) interaction potential,may as well exist in quasi-2D system with finite-range Gaussian interaction potential.To gain an insight into the many-body states,the von Neumann entropy is calculated as a measure of quantum correlation and the conditional probability distribution is analyzed for the internal structure of the eigenstates.In the rapidly rotating regime the ground state in angular momentum subspaces L=(q/2)N(N-1) with q=2,4 is found to exhibit the anticorrelation structure suggesting that it may variationally be described by a Bose–Laughlin like state.We further observe that the first breathing mode exhibits features similar to the Bose–Laughlin state in having eigenenergy,von Neumann entropy and internal structure independent of interaction for the three-boson system considered here.On the contrary,for eigenstates lying between the Bose–Laughlin like ground state and the first breathing mode,values of eigenenergy,von Neumann entropy and internal structure are found to vary with interaction.