A rapid method to determine glutamic acid (Glu) in cerebrospinal fluid (CSF) by capillaryelectrophoresis with high frequency conductivity detection (contactless conductivity detection) wasdescribed. The CSF sample was...A rapid method to determine glutamic acid (Glu) in cerebrospinal fluid (CSF) by capillaryelectrophoresis with high frequency conductivity detection (contactless conductivity detection) wasdescribed. The CSF sample was pretreated with silver cation resin to remove high concentration ofCl- ions in CSF. The separation was achieved in the buffer solution of 10 mmol/L Tris and 8mmol/L boric acid at the separation voltage of 20.0 kV. Glu showed linear response in the range of5.0×10-6 to 6.0×10-3 mol/L, the limit of detection was 1.0×10-6 mol/L. The method was used foranalysis Glu in CSF satisfactorily with a recovery of 97.8-98.8%.展开更多
[Objectives]This study was conducted to investigate the effects of Vitis heyneana cultivation on rocky hillsides on the variation of soil fertility,so as to provide theoretical support for economic development and the...[Objectives]This study was conducted to investigate the effects of Vitis heyneana cultivation on rocky hillsides on the variation of soil fertility,so as to provide theoretical support for economic development and the control of rocky desertification in the Dashi mountainous area.[Methods]Taking V.heyneana planting base in Luocheng County,Hechi City,Guangxi Province as the research object,the methods of field investigation,regular sampling and experimental analysis were used to analyze seasonal variations of soil urease,sucrase and soil alkaline phosphatase activity of 15 different sample plots surveyed,and their correlation with soil physical and chemical properties was analyzed.[Results]①In general,sucrase,urease and alkaline phosphatase were lower in summer and autumn,and higher in spring and winter,and the performance of the activity of the three enzymes was inconsistent.Among them,the activity of sucrase was in order of spring>autumn>summer>winter,and the activity of urease and alkaline phosphatase showed an order of winter>spring>summer>autumn.②The seasonal variations of soil fertility in different sample plots were affected by various factors such as human disturbance,climate change,vegetation coverage,topography and landforms,cultivation and management measures,and although the change laws in different sample plots were different,the seasonal differences in soil fertility in the same place were extremely significant.③If the influence of artificial fertilization factors is excluded,the planting of V.heyneana on rocky hillsides will cause a significant decrease in soil enzyme activity,that is,a significant decrease in soil fertility.[Conclusions]Related issues such as the effects of planting V.heyneana on the variation of soil fertility in rocky hillsides should arouse necessary attention of management departments and producers.展开更多
Aim Isolation and structural elucidation of the constituents from the aerial part of Vitis thunbergii . Methods To isolate chemical constituents, column chromatography and HPLC were used. Physico chemical ...Aim Isolation and structural elucidation of the constituents from the aerial part of Vitis thunbergii . Methods To isolate chemical constituents, column chromatography and HPLC were used. Physico chemical characterization and spectroscopic analysis were employed for structural identification. Results Eleven polyphenols were isolated and identified. Conclusion Compound 1 is a new compound and its structure was characterized to be 3,5 dimethoxyl 4 hydroxyl phenylpropanol 9 O β D glycopyranoside.展开更多
该文报道了在浙江葡萄属(Vitis L.)分类研究中的新发现:(1)描述了开化葡萄(V.kaihuaica Z.H.Chen,F.Chen et W.Y.Xie)、秀丽葡萄(V.amoena Z.H.Chen,F.Chen et W.Y.Xie)2新种和腺枝龙泉葡萄(V.longquanensis var.glandulosa Z.H.Chen,F....该文报道了在浙江葡萄属(Vitis L.)分类研究中的新发现:(1)描述了开化葡萄(V.kaihuaica Z.H.Chen,F.Chen et W.Y.Xie)、秀丽葡萄(V.amoena Z.H.Chen,F.Chen et W.Y.Xie)2新种和腺枝龙泉葡萄(V.longquanensis var.glandulosa Z.H.Chen,F.Chen et W.Y.Xie)1新变种;(2)将V.adenoclada Hand.-Mazz.作为毛葡萄(V.heyneana Roem.et Schult.)的变种处理,即腺枝毛葡萄[V.heyneana Roem.et Schult.var.adenoclada(Hand.-Mazz.)Z.H.Chen,F.Chen et W.Y.Xie];(3)报道了蓝果刺葡萄[V.davidii(Roman.Du Caill.)Foex var.cyanocarpa(Gagnep.)Sarg.]在浙江的分布新记录。展开更多
The plant WRKY gene family represents an ancient and complex class of zinc-finger transcription factors(TFs)that are involved in the regulation of various physiological processes,such as development and senescence,and...The plant WRKY gene family represents an ancient and complex class of zinc-finger transcription factors(TFs)that are involved in the regulation of various physiological processes,such as development and senescence,and in plant response to many biotic and abiotic stresses.Despite the growing number of studies on the genomic organisation of WRKY gene family in different species,little information is available about this family in grapevine(Vitis vinifera L.).In the present study,a total number of 59 putative grapevine WRKY transcription factors(VvWRKYs)were identified based on the analysis of various genomic and proteomic grapevine databases.According to their structural and phylogentic features,the identified grapevine WRKY transcription factors were classified into three main groups.In order to shed light into their regulatory roles in growth and development as well as in response to biotic and abiotic stress in grapevine,the VvWRKYs expression profiles were examined in publicly available microarray data.Bioinformatics analysis of these data revealed distinct temporal and spatial expression patterns of VvWRKYs in various tissues,organs and developmental stages,as well as in response to biotic and abiotic stresses.To also extend our analysis to situations not covered by the arrays and to validate our results,the expression profiles of selected VvWRKYs in response to drought stress,Erysiphe necator(powdery mildew)infection,and hormone treatments(salicilic acid and ethylene),were investigated by quantitative real-time reverse transcription PCR(qRT-PCR).The present study provides a foundation for further comparative genomics and functional studies of this important class of transcriptional regulators in grapevine.展开更多
The full length cDNA sequence of CBF3 (CRT/DRE-binding factor) was cloned from Vitis amurensis by reverse transcription polymerase chain reaction (RT-PCR) using the primers designed based on CBF genes available in...The full length cDNA sequence of CBF3 (CRT/DRE-binding factor) was cloned from Vitis amurensis by reverse transcription polymerase chain reaction (RT-PCR) using the primers designed based on CBF genes available in GenBank. Sequence analysis showed that the gene had 854 bp long and its coding sequence contained 720 bp, encoding a protein with 239 amino acids and an AP2 structural domain. The molecular mass of CBF3 was predicted to be 25.9 kDa and its theoretical isoelectric point was 7.02 and aliphatic index was 59.29. The average hydropathicity of the protein was -0.551. The tertiary structures of CBF3 were also analyzed. The prokaryotic expression vector pGEX-4T-CBF3 containing CBF3 gene was constructed and CBF3 fusion protein (52 kDa) was produced in Escherichia coli after induction with 1 mmol L-1 IPTG. Further studies are needed to evaluate its potential application for improving plant resistance to cold and other stress condition such as drought and salinity.展开更多
Amurensin H(1) is a new resveratrol dimer isolated from the roots of Vitis amurensis Rupr. Its structure was determined by spectroscopic methods. II was synthesized from resveratrol with an oxidative coupling reaction...Amurensin H(1) is a new resveratrol dimer isolated from the roots of Vitis amurensis Rupr. Its structure was determined by spectroscopic methods. II was synthesized from resveratrol with an oxidative coupling reaction as a key step.展开更多
Non-embryogenic calli (NEC) was inevitably and heavily produced when grape embryogenic calli (EC) was induced from explants or during the subculture of EC.A stable and highly efficient NEC transformation platform ...Non-embryogenic calli (NEC) was inevitably and heavily produced when grape embryogenic calli (EC) was induced from explants or during the subculture of EC.A stable and highly efficient NEC transformation platform is required to further sort out and verify key genes which determine/switch the identity of NEC and EC.In this research,a vector pA5 containing a chitinase signal sequence fused to gfp (green fluorescent protein) and an HDEL motive was used to target and immobilize into Agrobacterium strain EHA105 to establish a transformation platform for Vitis vinifera L.cv.Chardonnay NEC.It was determined that NEC 10 d after subculture was the best target tissue;30 min for inoculation followed by 3 d co-cultivation with the addition of 200 μmol L-1 acetosyringone (AS) was optimized as protocol.The use of bacterial densities as 1.0 at OD600 did not result in serious tissue hypersensitive reaction and it had higher efficiency.Kanamycin at 200 mg L-1 was picked for positive expression selection.The stable transformation of NEC was proved by reverse transcription-polymerase chain reaction techniques (RT-PCR) and fluorescent microscopy after three sub-cultures of the selected cell line.Highly efficient genetic transformation protocol of grape NEC was achieved and some of the optimized parameters were different from that reported for EC.This transformation platform could facilitate the verification of candidate somatic embryogenesis (SE) decisive genes,and the successfully transformed NEC with certain genes can also be used as bioreactors for the production of functional products,as NEC not only proliferates fast,but also keeps in a rather stable condition.展开更多
基金This project was supported by the Guangdong Provincial Foundation of Natural Science(021808)
文摘A rapid method to determine glutamic acid (Glu) in cerebrospinal fluid (CSF) by capillaryelectrophoresis with high frequency conductivity detection (contactless conductivity detection) wasdescribed. The CSF sample was pretreated with silver cation resin to remove high concentration ofCl- ions in CSF. The separation was achieved in the buffer solution of 10 mmol/L Tris and 8mmol/L boric acid at the separation voltage of 20.0 kV. Glu showed linear response in the range of5.0×10-6 to 6.0×10-3 mol/L, the limit of detection was 1.0×10-6 mol/L. The method was used foranalysis Glu in CSF satisfactorily with a recovery of 97.8-98.8%.
基金Natural Science Foundation of Guangxi(GKZ 0832273)Laboratory of Comprehensive Prevention and Control of Rocky Desertification in Karst Areas in Northwest Guangxi(XZF[2016]91)+1 种基金High-level Talent Research Startup Fund of Hechi University(XJ2018GKQ016)Undergraduate Innovation and Enterpreneurship Training Program of Guangxi(201810605086).
文摘[Objectives]This study was conducted to investigate the effects of Vitis heyneana cultivation on rocky hillsides on the variation of soil fertility,so as to provide theoretical support for economic development and the control of rocky desertification in the Dashi mountainous area.[Methods]Taking V.heyneana planting base in Luocheng County,Hechi City,Guangxi Province as the research object,the methods of field investigation,regular sampling and experimental analysis were used to analyze seasonal variations of soil urease,sucrase and soil alkaline phosphatase activity of 15 different sample plots surveyed,and their correlation with soil physical and chemical properties was analyzed.[Results]①In general,sucrase,urease and alkaline phosphatase were lower in summer and autumn,and higher in spring and winter,and the performance of the activity of the three enzymes was inconsistent.Among them,the activity of sucrase was in order of spring>autumn>summer>winter,and the activity of urease and alkaline phosphatase showed an order of winter>spring>summer>autumn.②The seasonal variations of soil fertility in different sample plots were affected by various factors such as human disturbance,climate change,vegetation coverage,topography and landforms,cultivation and management measures,and although the change laws in different sample plots were different,the seasonal differences in soil fertility in the same place were extremely significant.③If the influence of artificial fertilization factors is excluded,the planting of V.heyneana on rocky hillsides will cause a significant decrease in soil enzyme activity,that is,a significant decrease in soil fertility.[Conclusions]Related issues such as the effects of planting V.heyneana on the variation of soil fertility in rocky hillsides should arouse necessary attention of management departments and producers.
文摘Aim Isolation and structural elucidation of the constituents from the aerial part of Vitis thunbergii . Methods To isolate chemical constituents, column chromatography and HPLC were used. Physico chemical characterization and spectroscopic analysis were employed for structural identification. Results Eleven polyphenols were isolated and identified. Conclusion Compound 1 is a new compound and its structure was characterized to be 3,5 dimethoxyl 4 hydroxyl phenylpropanol 9 O β D glycopyranoside.
基金This workwas supported by the Priority Academic Program Development of Modern Horticultural Science in Jiangsu Province.
文摘The plant WRKY gene family represents an ancient and complex class of zinc-finger transcription factors(TFs)that are involved in the regulation of various physiological processes,such as development and senescence,and in plant response to many biotic and abiotic stresses.Despite the growing number of studies on the genomic organisation of WRKY gene family in different species,little information is available about this family in grapevine(Vitis vinifera L.).In the present study,a total number of 59 putative grapevine WRKY transcription factors(VvWRKYs)were identified based on the analysis of various genomic and proteomic grapevine databases.According to their structural and phylogentic features,the identified grapevine WRKY transcription factors were classified into three main groups.In order to shed light into their regulatory roles in growth and development as well as in response to biotic and abiotic stress in grapevine,the VvWRKYs expression profiles were examined in publicly available microarray data.Bioinformatics analysis of these data revealed distinct temporal and spatial expression patterns of VvWRKYs in various tissues,organs and developmental stages,as well as in response to biotic and abiotic stresses.To also extend our analysis to situations not covered by the arrays and to validate our results,the expression profiles of selected VvWRKYs in response to drought stress,Erysiphe necator(powdery mildew)infection,and hormone treatments(salicilic acid and ethylene),were investigated by quantitative real-time reverse transcription PCR(qRT-PCR).The present study provides a foundation for further comparative genomics and functional studies of this important class of transcriptional regulators in grapevine.
基金supported by the Fundamental Research Funds for the Central Universities,China(DL09EAQ02)the Natural Science Foundation of Heilongjiang Province and Harbin City,China(C200606nd and 2006RFQN005)
文摘The full length cDNA sequence of CBF3 (CRT/DRE-binding factor) was cloned from Vitis amurensis by reverse transcription polymerase chain reaction (RT-PCR) using the primers designed based on CBF genes available in GenBank. Sequence analysis showed that the gene had 854 bp long and its coding sequence contained 720 bp, encoding a protein with 239 amino acids and an AP2 structural domain. The molecular mass of CBF3 was predicted to be 25.9 kDa and its theoretical isoelectric point was 7.02 and aliphatic index was 59.29. The average hydropathicity of the protein was -0.551. The tertiary structures of CBF3 were also analyzed. The prokaryotic expression vector pGEX-4T-CBF3 containing CBF3 gene was constructed and CBF3 fusion protein (52 kDa) was produced in Escherichia coli after induction with 1 mmol L-1 IPTG. Further studies are needed to evaluate its potential application for improving plant resistance to cold and other stress condition such as drought and salinity.
文摘Amurensin H(1) is a new resveratrol dimer isolated from the roots of Vitis amurensis Rupr. Its structure was determined by spectroscopic methods. II was synthesized from resveratrol with an oxidative coupling reaction as a key step.
基金supported by the National Natural Science Foundation of China (30471212,30500347)the Earmarked Fund for Modern Agro-Industry Technology Research System,Ministry of Agriculture,China (NYCYTX-3-CY-04)
文摘Non-embryogenic calli (NEC) was inevitably and heavily produced when grape embryogenic calli (EC) was induced from explants or during the subculture of EC.A stable and highly efficient NEC transformation platform is required to further sort out and verify key genes which determine/switch the identity of NEC and EC.In this research,a vector pA5 containing a chitinase signal sequence fused to gfp (green fluorescent protein) and an HDEL motive was used to target and immobilize into Agrobacterium strain EHA105 to establish a transformation platform for Vitis vinifera L.cv.Chardonnay NEC.It was determined that NEC 10 d after subculture was the best target tissue;30 min for inoculation followed by 3 d co-cultivation with the addition of 200 μmol L-1 acetosyringone (AS) was optimized as protocol.The use of bacterial densities as 1.0 at OD600 did not result in serious tissue hypersensitive reaction and it had higher efficiency.Kanamycin at 200 mg L-1 was picked for positive expression selection.The stable transformation of NEC was proved by reverse transcription-polymerase chain reaction techniques (RT-PCR) and fluorescent microscopy after three sub-cultures of the selected cell line.Highly efficient genetic transformation protocol of grape NEC was achieved and some of the optimized parameters were different from that reported for EC.This transformation platform could facilitate the verification of candidate somatic embryogenesis (SE) decisive genes,and the successfully transformed NEC with certain genes can also be used as bioreactors for the production of functional products,as NEC not only proliferates fast,but also keeps in a rather stable condition.