Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduit...Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries.展开更多
Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the ...Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the use of tubular nerve guidance conduits(tNGCs). However, the use of tNGCs results in poor functional recovery and central necrosis of the regenerating tissue, which limits their application to short nerve lesion defects(typically shorter than 3 cm). Given the importance of vascularization in nerve regeneration, we hypothesized that enabling the growth of blood vessels from the surrounding tissue into the regenerating nerve within the tNGC would help eliminate necrotic processes and lead to improved regeneration. In this study, we reported the application of macroscopic holes into the tubular walls of silk-based tNGCs and compared the various features of these improved silk^(+) tNGCs with the tubes without holes(silk^(–) tNGCs) and autologous nerve transplants in an 8-mm sciatic nerve defect in rats. Using a combination of micro-computed tomography and histological analyses, we were able to prove that the use of silk^(+) tNGCs induced the growth of blood vessels from the adjacent tissue to the intraluminal neovascular formation. A significantly higher number of blood vessels in the silk^(+) group was found compared with autologous nerve transplants and silk^(–), accompanied by improved axon regeneration at the distal coaptation point compared with the silk^(–) tNGCs at 7 weeks postoperatively. In the 15-mm(critical size) sciatic nerve defect model, we again observed a distinct ingrowth of blood vessels through the tubular walls of silk^(+) tNGCs, but without improved functional recovery at 12 weeks postoperatively. Our data proves that macroporous tNGCs increase the vascular supply of regenerating nerves and facilitate improved axonal regeneration in a short-defect model but not in a critical-size defect model. This study suggests that further optimization of the macroscopic holes silk^(+) tNGC approach containing macroscopic holes might result in improved grafting technology suitable for future clinical use.展开更多
Complete transverse injury of peripheral nerves is challenging to treat.Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regu...Complete transverse injury of peripheral nerves is challenging to treat.Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regulate tissue regeneration.In previous studies,a collagen/hyaluronic acid sponge was shown to provide a suitable regeneration environment for Schwann cell proliferation and to promote axonal regeneration.This three-dimensional(3D)composite conduit contains a collagen/hyaluronic acid inner sponge enclosed in an electrospun hollow poly(lactic-co-glycolic acid)tube.However,whether there is a synergy between the 3D composite conduit and exosomes in the repair of peripheral nerve injury remains unknown.In this study,we tested a comprehensive strategy for repairing long-gap(10 mm)peripheral nerve injury that combined the 3D composite conduit with human umbilical cord mesenchymal stem cell-derived exosomes.Repair effectiveness was evaluated by sciatic functional index,sciatic nerve compound muscle action potential recording,recovery of muscle mass,measuring the cross-sectional area of the muscle fiber,Masson trichrome staining,and transmission electron microscopy of the regenerated nerve in rats.The results showed that transplantation of the 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes promoted peripheral nerve regeneration and restoration of motor function,similar to autograft transplantation.More CD31-positive endothelial cells were observed in the regenerated nerve after transplantation of the loaded conduit than after transplantation of the conduit without exosomes,which may have contributed to the observed increase in axon regeneration and distal nerve reconnection.Therefore,the use of a 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes represents a promising cell-free therapeutic option for the treatment of peripheral nerve injury.展开更多
The use of autologous nerve grafts remains the gold standard for treating nerve defects, but current nerve repair techniques are limited by donor tissue availability and morbidity associated with tissue loss. Recently...The use of autologous nerve grafts remains the gold standard for treating nerve defects, but current nerve repair techniques are limited by donor tissue availability and morbidity associated with tissue loss. Recently, the use of conduits in nerve injury repair, made possible by tissue engineering, has shown therapeutic potential. We manufactured a biodegradable, collagen-based nerve conduit containing decellularized sciatic nerve matrix and compared this with a silicone conduit for peripheral nerve regeneration using a rat model. The collagen-based conduit contains nerve growth factor, brain-derived neurotrophic factor, and laminin, as demonstrated by enzyme-linked immunosorbent assay. Scanning electron microscopy images showed that the collagen-based conduit had an outer wall to prevent scar tissue infiltration and a porous inner structure to allow axonal growth. Rats that were implanted with the collagen-based conduit to bridge a sciatic nerve defect experienced significantly improved motor and sensory nerve functions and greatly enhanced nerve regeneration compared with rats in the sham control group and the silicone conduit group. Our results suggest that the biodegradable collagen-based nerve conduit is more effective for peripheral nerve regeneration than the silicone conduit.展开更多
The flow patterns in the inlet and outlet conduits have a decisive effect on the safe, stable, and highly efficient operation of the pump in a large pumping station with low head. The numerical simulation of three-dim...The flow patterns in the inlet and outlet conduits have a decisive effect on the safe, stable, and highly efficient operation of the pump in a large pumping station with low head. The numerical simulation of three-dimensional (3D) turbulence flow in conduits is an important method to study the hydraulic performance and conduct an optimum hydraulic design for the conduits. With the analyses of the flow patterns in the inlet and outlet conduits, the boundary conditions of the numerical simulation for them can be determined. The main obtained conclusions are as follows: (i) Under normal operation conditions, there is essentially no pre-swirl flow at the impeller chamber inlet of an axial-flow pump system, based on which the boundary condition at the inlet conduit may be defined. (ii) The circulation at the guide vane outlet of an axial-flow pump system has a great effect on the hydraulic performance of the outlet conduit, and there is optimum circulation for the performance. Therefore, it is strongly suggested to design the guide vane according to the optimum circulation. (iii) The residual circulation at the guide vane outlet needs to be considered for the inlet boundary condition of the outlet conduit, and the value of the circulation may be measured in a specially designed test model.展开更多
Due to the high heterogeneity and complexity of water flow movement for multiple karst water-bearing mediums,the evaluation,effective development,and utilization of karst water resources are significantly limited.Matr...Due to the high heterogeneity and complexity of water flow movement for multiple karst water-bearing mediums,the evaluation,effective development,and utilization of karst water resources are significantly limited.Matrix flow is usually laminar,whereas conduit flow is usually turbulent.The driving mechanisms of water exchange that occur between the karst conduit and its adjacent matrix are not well understood.This paper investigates the hydrodynamic characteristics and the mechanism of flow exchange in dual water-bearing mediums(conduit and matrix)of karst aquifers through laboratory experimentation and numerical simulation.A karst aquifer consisting of a matrix network and a conduit was proposed,and the relationship between the water exchange flux and hydraulic head differences generated from the laboratory experiments was analyzed.Two modes of experimental tests were performed with different fixed water level boundaries in the laboratory karst aquifer.The results indicate that the water exchange capacity was proportional to the square root of hydraulic head differences.The linear exchange term in the conduit flow process(CFP)source program was modified according to experimental results.The modified CFP and the original CFP model experimental data results were compared,and it was found that the modified CFP model had better fitting effects.These results showed that the water exchange mechanism between conduit and matrix is very important for solid-liquid interface reaction,water resource evaluation,and understanding of karst hydrodynamic behavior.展开更多
Microspheres containing nerve growth factor for sustained release were prepared by a compound method, and implanted into chitosan conduits to repair 10-mm defects on the right buccal branches of the facial nerve in ra...Microspheres containing nerve growth factor for sustained release were prepared by a compound method, and implanted into chitosan conduits to repair 10-mm defects on the right buccal branches of the facial nerve in rabbits. In addition, chitosan conduits combined with nerve growth factor or normal saline, as well as autologous nerve, were used as controls. At 90 days post-surgery, the muscular atrophy on the right upper lip was more evident in the nerve growth factor and normal sa- line groups than in the nerve growth factor-microspheres and autologous nerve groups. Electro- physiological analysis revealed that the nerve conduction velocity and amplitude were significantly higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. Moreover, histological observation illustrated that the di- ameter, number, alignment and myelin sheath thickness of myelinated nerves derived from rabbits were higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. These findings indicate that chitosan nerve conduits com- bined with microspheres for sustained release of nerve growth factor can significantly improve facial nerve defect repair in rabbits.展开更多
The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some respects, but few data com...The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some respects, but few data comparing the biomechanical factors related to the sciatic nerve are available. In the present study, rabbit models of 10-mm sciatic nerve defects were prepared. The rabbit models were repaired with autologous nerve, a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells, or a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel. After 24 weeks, mechanical testing was performed to determine the stress relaxation and creep parameters. Following sciatic nerve injury, the magnitudes of the stress decrease and strain increase at 7,200 seconds were largest in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group, followed by the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group, and then the autologous nerve group. Hematoxylin-eosin staining demonstrated that compared with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group and the autologous nerve group, a more complete sciatic nerve regeneration was found, including good myelination, regularly arranged nerve fibers, and a completely degraded and resorbed conduit, in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group. These results indicate that bridging 10-mm conduit + bone marrow mesenchymal stem sciatic nerve defects with a polylactic glycolic acid cells + extracellular matrix gel construct increases the stress relaxation under a constant strain, reducing anastomotic tension. Large elongations under a constant physiological load can limit the anastomotic opening and shift, which is beneficial for the regeneration and functional reconstruction of sciatic nerve. Better regeneration was found with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel grafts than with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells grafts and the autologous nerve grafts.展开更多
The clinical effects of 2-mm small gap sleeve bridging of the biological conduit to repair periph- eral nerve injury are better than in the traditional epineurium suture, so it is possible to replace the epineurium su...The clinical effects of 2-mm small gap sleeve bridging of the biological conduit to repair periph- eral nerve injury are better than in the traditional epineurium suture, so it is possible to replace the epineurium suture in the treatment of peripheral nerve injury. This study sought to identify the regeneration law of nerve fibers in the biological conduit. A nerve regeneration chamber was constructed in models of sciatic nerve injury using 2-mm small gap sleeve bridging of a biodegradable biological conduit. The results showed that the biological conduit had good his- tocompatibility. Tissue and cell apoptosis in the conduit apparently lessened, and regenerating nerve fibers were common. The degeneration regeneration law of Schwann cells and axons in the conduit was quite different from that in traditional epineurium suture. During the prime period for nerve fiber regeneration (2-8 weeks), the number of Schwann cells and nerve fibers was higher in both proximal and distal ends, and the effects of the small gap sleeve bridging method were better than those of the traditional epineurium suture. The above results provide an objec- tive and reliable theoretical basis for the clinical application of the biological conduit small gap sleeve bridging method to repair peripheral nerve injury.展开更多
In recent years, the use of Schwann cell transplantation to repair peripheral nerve injury has attracted much attention. Animal-based studies show that the transplantation of Schwann cells in combination with nerve sc...In recent years, the use of Schwann cell transplantation to repair peripheral nerve injury has attracted much attention. Animal-based studies show that the transplantation of Schwann cells in combination with nerve scaffolds promotes the repair of injured peripheral nerves. Autologous Schwann cell transplantation in humans has been reported recently. This article reviews current methods for removing the extracellular matrix and analyzes its composition and function. The development and secretory products of Schwann cells are also reviewed. The methods for the repair of peripheral nerve injuries that use myelin and Schwann cell transplantation are assessed. This survey of the literature data shows that using a decellularized nerve conduit combined with Schwann cells represents an effective strategy for the treatment of peripheral nerve injury. This analysis provides a comprehensive basis on which to make clinical decisions for the repair of peripheral nerve injury.展开更多
We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staini...We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker) and glial fibrillary acidic protein (glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvi- ronment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.展开更多
Previous studies have demonstrated that deacetyl chitin conduit nerve bridging or electrical stimulation can effectively promote the regeneration of the injured peripheral nerve. We hypoth-esized that the combination ...Previous studies have demonstrated that deacetyl chitin conduit nerve bridging or electrical stimulation can effectively promote the regeneration of the injured peripheral nerve. We hypoth-esized that the combination of these two approaches could result in enhanced regeneration. Rats with right sciatic nerve injury were subjected to deacetyl chitin conduit bridging combined with electrical stimulation (0.1 ms, 3 V, 20 Hz, for 1 hour). At 6 and 12 weeks after treatment, nerve conduction velocity, myelinated axon number, ifber diameter, axon diameter and the thickness of the myelin sheath in the stimulation group were better than in the non-stimulation group. The results indicate that deacetyl chitin conduit bridging combined with temporary electrical stimu-lation can promote peripheral nerve repair.展开更多
As patients with carcinoma of the esophagus live longer, complications associated with the use of a gastric conduit are increasing. Ulcers form in the gastric conduit in 6.6% to 19.4% of patients. There are a few repo...As patients with carcinoma of the esophagus live longer, complications associated with the use of a gastric conduit are increasing. Ulcers form in the gastric conduit in 6.6% to 19.4% of patients. There are a few reports of perforation of a gastric conduit in the English literature. Almost all of these were associated with serious complications. We report a patient who developed a tension pneumothorax consequent to spontaneous perforation of an ulcer in the gastric conduit 7 years after the index surgery in a patient with carcinoma of the gastroesophageal junction. He responded well to conservative management. Complications related to a gastric conduit can be because of multiple factors. Periodic endoscopic surveillance of gastric conduits should be considered as these are at a higher risk of ulcer formation than a normal stomach. Long term treatment with proton pump inhibitors may decrease complications. There are no guidelines for the treatment of a perforated gastric conduit ulcer and the management should be individualized.展开更多
A 53-year-old male developed cervical esophageal stenosis after esophageal bypass surgery using a right colon conduit.The esophageal bypass surgery was performed to treat multiple esophageal strictures resulting from ...A 53-year-old male developed cervical esophageal stenosis after esophageal bypass surgery using a right colon conduit.The esophageal bypass surgery was performed to treat multiple esophageal strictures resulting from corrosive ingestion three years prior to presentation.Although the patient underwent several endoscopic stricture dilatations after surgery,he continued to suffer from recurrent esophageal stenosis.We planned cervical patch esophagoplasty with a pedicled skin flap of sternocleidomastoid(SCM) muscle.Postoperative recovery was successful,and the patient could eat a solid meal without difficulty and has been well for 18 mo.SCM flap esophagoplasty is an easier and safer method of managing complicated and recurrent cervical esophageal strictures than other operations.展开更多
Treatment of peripheral nerve injuries remains a challenge to modern medicine due to the com-plexity of the neurobiological nerve regenerating process. There is a greater challenge when the transected nerve ends are n...Treatment of peripheral nerve injuries remains a challenge to modern medicine due to the com-plexity of the neurobiological nerve regenerating process. There is a greater challenge when the transected nerve ends are not amenable to primary end-to-end tensionless neurorraphy. When facing a segmental nerve defect, great effort has been made to develop an alternative to the au-tologous nerve graft in order to circumvent morbidity at donor site, such as neuroma formation, scarring and permanent loss of function. Tubolization techniques have been developed to bridge nerve gaps and have been extensively studied in numerous experimental and clinical trials. The use of a conduit intends to act as a vehicle for moderation and modulation of the cellular and molecular ambience for nerve regeneration. Among several conduits, vein tubes were validated for clinical application with improving outcomes over the years. This article aims to address the investigation and treatment of segmental nerve injury and draw the current panorama on the use of vein tubes as an autogenous nerve conduit.展开更多
Nerve conduits enhance nerve regeneration in the repair of long-distance peripheral nerve defects. To help optimize the effectiveness of nerve conduits for nerve repair, we developed a multi-step electrospinning proce...Nerve conduits enhance nerve regeneration in the repair of long-distance peripheral nerve defects. To help optimize the effectiveness of nerve conduits for nerve repair, we developed a multi-step electrospinning process for constructing nerve guide conduits with aligned nanofibers. The alignment of the nerve guide conduits was characterized by scanning electron microscopy and fast Fourier transform. The mechanical performance of the nerve guide conduits was assessed by testing for tensile strength and compression resistance. The biological performance of the aligned fibers was examined using Schwann cells, PC12 cells and dorsal root ganglia in vitro. Immunohistochemistry was performed for the Schwann cell marker S100 and for the neurofilament protein NF200 in PC12 cells and dorsal root ganglia. In the in vivo experiment, a 1.5-cm defect model of the right sciatic nerve in adult female Sprague-Dawley rats was produced and bridged with an aligned nerve guide conduit. Hematoxylin-eosin staining and immunohistochemistry were used to observe the expression of ATF3 and cleaved caspase-3 in the regenerating matrix. The recovery of motor function was evaluated using the static sciatic nerve index. The number of myelinated fibers, axon diameter, fiber diameter, and myelin thickness in the distal nerve were observed by electron microscopy. Gastrocnemius muscle mass ratio was also determined. The analyses revealed that aligned nanofiber nerve guide conduits have good mechanical properties and can induce Schwann cells, PC12 cells and dorsal root ganglia to aggregate along the length of the nanofibers, and promote the growth of longer axons in the latter two(neuronal) cell types. The aligned fiber nerve conduits increased the expression of ATF3 and cleaved caspase-3 at the middle of the regenerative matrix and at the distal nerve segment, improved sciatic nerve function, increased muscle mass of the gastrocnemius muscle, and enhanced recovery of distal nerve ultrastructure. Collectively, the results show that highly aligned nanofibers improve the performance of the nerve conduit bridge, and enhance its effectiveness in repairing peripheral nerve defects.展开更多
When repairing nerves with adhesives, most researchers place glue directly on the nerve stumps, but this method does not fix the nerve ends well and allows glue to easily invade the nerve ends. In this study, we estab...When repairing nerves with adhesives, most researchers place glue directly on the nerve stumps, but this method does not fix the nerve ends well and allows glue to easily invade the nerve ends. In this study, we established a rat model of completely transected sciatic nerve injury and re- paired it using a modified 1 cm-length conduit with inner diameter of 1.5 mm. Each end of the cylindrical conduit contains a short linear channel, while the enclosed central tube protects the nerve ends well Nerves were repaired with 2-octyl-cyanoacrylate and suture, which complement the function of the modified conduit. The results demonstrated that for the same conduit, the av- erage operation time using the adhesive method was much shorter than with the suture method. No significant differences were found between the two groups in sciatic function index, motor evoked potential latency, motor evoked potential amplitude, muscular recovery rate, number of medullated nerve fibers, axon diameter, or medullary sheath thickness. Thus, the adhesive method for repairing nerves using a modified conduit is feasible and effective, and reduces the operation time while providing an equivalent repair effect.展开更多
Previous studies of nerve conduits have investigated numerous properties, such as conduit luminal structure and neurotrophic factor incorporation, for the regeneration of nerve defects. The present study used a poly(...Previous studies of nerve conduits have investigated numerous properties, such as conduit luminal structure and neurotrophic factor incorporation, for the regeneration of nerve defects. The present study used a poly(lactic-co-glycolic acid) (PLGA) copolymer to construct a three-dimensional (3D) bionic nerve conduit, with two channels and multiple microtubule lumens, and incorporating two neurotrophic factors, each with their own delivery system, as a novel environment for peripheral nerve regeneration. The efficacy of this conduit in repairing a 1.5 cm sciatic nerve defect was compared with PLGA-alone and PLGA-microfilament conduits, and autologous nerve transplantation. Results showed that compared with the other groups, the 3D bionic nerve conduit had the fastest nerve conduction velocity, largest electromyogram amplitude, and shortest electromyogram latency. In addition, the nerve fiber density, myelin sheath thickness and axon diameter were significantly increased, and the recovery rate of the triceps surae muscle wet weight was lowest. These findings suggest that 3D bionic nerve conduits can provide a suitable microenvironment for peripheral nerve regeneration to efficiently repair sciatic nerve defects. p展开更多
The Ordovician karst groundwater in the Qiligou basin is an important water supply source. This groundwater has been seriously contaminated in recent years by Cfl4 from a pesticide plant located in the recharge area. ...The Ordovician karst groundwater in the Qiligou basin is an important water supply source. This groundwater has been seriously contaminated in recent years by Cfl4 from a pesticide plant located in the recharge area. The highest concentration of CCl4 in the groundwater is 3909.2μg/L. Large scale tracer experiments were carried out to study the conveying conduits for Cfl4 in the basin on May 1-6, 2005. Nontoxic, edible glucose was used as a tracer and it was detected by spectrophotometric techniques. Well area of the basin, was employed for injecting the tracer X-61, located near the pesticide plant in the southern recharge Ten wells widely located in the groundwater runoff area were used as observing and sampling wells. The results show that the migration of the pollutants is controlled by the water hydrodynamic field and by the development of karst conduits. The tracer did not enter the up-drainage wells, X-49 and X-47, near the injection point because the water levels at these wells are higher than at the injection point. The adjacent well X-62 is close to the injection site, but the tracer reached the well after eleven hours. Wells X-43, X-59, X-58, YY-1 and X-57, located in the syncline axis runoff area, are respectively 2.5, 3.5, 4.33, 4.38 and 5.44 kilometers from the in- jection site. The time for initial appearance of tracer was 4, 4, 2, 6 and 4 hours, respectively. The maximum runoff velocity (well X-58) is over two kilometers per hour, indicating that the karst conduits are well developed along the syncline basin axis. These conduits are the main conveying conduits for groundwater and Cfl4. Closer wells were not necessarily the first to receive tracer. This shows the inhomogeneity in karst development which causes complex runoff, and pollutant migration, patterns.展开更多
Our previous studies have histomorphologically confirmed that nanofibrous poly(3-hydroxybutyrate- co-3-hydroxyvalerate) conduit can be used to repair 30-mm-long sciatic nerve defects. However, the repair effects on ...Our previous studies have histomorphologically confirmed that nanofibrous poly(3-hydroxybutyrate- co-3-hydroxyvalerate) conduit can be used to repair 30-mm-long sciatic nerve defects. However, the repair effects on rat behaviors remain poorly understood. In this study, we used nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) conduit and autologous sciatic nerve to bridge 30-ram-long rat sciatic nerve gaps. Within 4 months after surgery, rat sciatic nerve functional re- covery was evaluated per month by behavioral analyses, including toe out angle, toe spread anal- ysis, walking track analysis, extensor postural thrust, swimming test, open-field analysis and no- ciceptive function. Results showed that rat sciatic nerve functional recovery was similar after nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) conduit and autologous nerve grafting. These findings suggest that nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) conduit is suitable in use for repair of long-segment sciatic nerve defects.展开更多
基金supported by the National Natural Science Foundation of China,No.82202718the Natural Science Foundation of Beijing,No.L212050the China Postdoctoral Science Foundation,Nos.2019M664007,2021T140793(all to ZL)。
文摘Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries.
基金supported by the Lorenz B?hler Fonds,#2/19 (obtained by the Neuroregeneration Group,Ludwig Boltzmann Institute for Traumatology)the City of Vienna project ImmunTissue,MA23#30-11 (obtained by the Department Life Science Engineering,University of Applied Sciences Technikum Wien)。
文摘Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the use of tubular nerve guidance conduits(tNGCs). However, the use of tNGCs results in poor functional recovery and central necrosis of the regenerating tissue, which limits their application to short nerve lesion defects(typically shorter than 3 cm). Given the importance of vascularization in nerve regeneration, we hypothesized that enabling the growth of blood vessels from the surrounding tissue into the regenerating nerve within the tNGC would help eliminate necrotic processes and lead to improved regeneration. In this study, we reported the application of macroscopic holes into the tubular walls of silk-based tNGCs and compared the various features of these improved silk^(+) tNGCs with the tubes without holes(silk^(–) tNGCs) and autologous nerve transplants in an 8-mm sciatic nerve defect in rats. Using a combination of micro-computed tomography and histological analyses, we were able to prove that the use of silk^(+) tNGCs induced the growth of blood vessels from the adjacent tissue to the intraluminal neovascular formation. A significantly higher number of blood vessels in the silk^(+) group was found compared with autologous nerve transplants and silk^(–), accompanied by improved axon regeneration at the distal coaptation point compared with the silk^(–) tNGCs at 7 weeks postoperatively. In the 15-mm(critical size) sciatic nerve defect model, we again observed a distinct ingrowth of blood vessels through the tubular walls of silk^(+) tNGCs, but without improved functional recovery at 12 weeks postoperatively. Our data proves that macroporous tNGCs increase the vascular supply of regenerating nerves and facilitate improved axonal regeneration in a short-defect model but not in a critical-size defect model. This study suggests that further optimization of the macroscopic holes silk^(+) tNGC approach containing macroscopic holes might result in improved grafting technology suitable for future clinical use.
基金supported by the National Key Research and Development Project of Stem Cell and Transformation Research,No.2019YFA0112100(to SF)the National Natural Science Foundation of China No.81930070(to SF)+1 种基金Multi-fund Investment Key Projects,No.21JCZDJC01100(to ZW)the Tianjin Science and Technology Planning Project,No.22JRRCRC00010(to SF)。
文摘Complete transverse injury of peripheral nerves is challenging to treat.Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regulate tissue regeneration.In previous studies,a collagen/hyaluronic acid sponge was shown to provide a suitable regeneration environment for Schwann cell proliferation and to promote axonal regeneration.This three-dimensional(3D)composite conduit contains a collagen/hyaluronic acid inner sponge enclosed in an electrospun hollow poly(lactic-co-glycolic acid)tube.However,whether there is a synergy between the 3D composite conduit and exosomes in the repair of peripheral nerve injury remains unknown.In this study,we tested a comprehensive strategy for repairing long-gap(10 mm)peripheral nerve injury that combined the 3D composite conduit with human umbilical cord mesenchymal stem cell-derived exosomes.Repair effectiveness was evaluated by sciatic functional index,sciatic nerve compound muscle action potential recording,recovery of muscle mass,measuring the cross-sectional area of the muscle fiber,Masson trichrome staining,and transmission electron microscopy of the regenerated nerve in rats.The results showed that transplantation of the 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes promoted peripheral nerve regeneration and restoration of motor function,similar to autograft transplantation.More CD31-positive endothelial cells were observed in the regenerated nerve after transplantation of the loaded conduit than after transplantation of the conduit without exosomes,which may have contributed to the observed increase in axon regeneration and distal nerve reconnection.Therefore,the use of a 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes represents a promising cell-free therapeutic option for the treatment of peripheral nerve injury.
基金supported by a grant from the Small and Medium Business Administration(S2082152)
文摘The use of autologous nerve grafts remains the gold standard for treating nerve defects, but current nerve repair techniques are limited by donor tissue availability and morbidity associated with tissue loss. Recently, the use of conduits in nerve injury repair, made possible by tissue engineering, has shown therapeutic potential. We manufactured a biodegradable, collagen-based nerve conduit containing decellularized sciatic nerve matrix and compared this with a silicone conduit for peripheral nerve regeneration using a rat model. The collagen-based conduit contains nerve growth factor, brain-derived neurotrophic factor, and laminin, as demonstrated by enzyme-linked immunosorbent assay. Scanning electron microscopy images showed that the collagen-based conduit had an outer wall to prevent scar tissue infiltration and a porous inner structure to allow axonal growth. Rats that were implanted with the collagen-based conduit to bridge a sciatic nerve defect experienced significantly improved motor and sensory nerve functions and greatly enhanced nerve regeneration compared with rats in the sham control group and the silicone conduit group. Our results suggest that the biodegradable collagen-based nerve conduit is more effective for peripheral nerve regeneration than the silicone conduit.
基金Project supported by the Natural Science Foundation of Jiangsu Higher Education Institutions ofChina(No.12KJD570001)
文摘The flow patterns in the inlet and outlet conduits have a decisive effect on the safe, stable, and highly efficient operation of the pump in a large pumping station with low head. The numerical simulation of three-dimensional (3D) turbulence flow in conduits is an important method to study the hydraulic performance and conduct an optimum hydraulic design for the conduits. With the analyses of the flow patterns in the inlet and outlet conduits, the boundary conditions of the numerical simulation for them can be determined. The main obtained conclusions are as follows: (i) Under normal operation conditions, there is essentially no pre-swirl flow at the impeller chamber inlet of an axial-flow pump system, based on which the boundary condition at the inlet conduit may be defined. (ii) The circulation at the guide vane outlet of an axial-flow pump system has a great effect on the hydraulic performance of the outlet conduit, and there is optimum circulation for the performance. Therefore, it is strongly suggested to design the guide vane according to the optimum circulation. (iii) The residual circulation at the guide vane outlet needs to be considered for the inlet boundary condition of the outlet conduit, and the value of the circulation may be measured in a specially designed test model.
基金funded by the Guangxi Natural Science Foundation(2018JJA150153)China Geological Survey Research Fund(JYYWF20180402)the project of China Geological Survey(DD20190342)。
文摘Due to the high heterogeneity and complexity of water flow movement for multiple karst water-bearing mediums,the evaluation,effective development,and utilization of karst water resources are significantly limited.Matrix flow is usually laminar,whereas conduit flow is usually turbulent.The driving mechanisms of water exchange that occur between the karst conduit and its adjacent matrix are not well understood.This paper investigates the hydrodynamic characteristics and the mechanism of flow exchange in dual water-bearing mediums(conduit and matrix)of karst aquifers through laboratory experimentation and numerical simulation.A karst aquifer consisting of a matrix network and a conduit was proposed,and the relationship between the water exchange flux and hydraulic head differences generated from the laboratory experiments was analyzed.Two modes of experimental tests were performed with different fixed water level boundaries in the laboratory karst aquifer.The results indicate that the water exchange capacity was proportional to the square root of hydraulic head differences.The linear exchange term in the conduit flow process(CFP)source program was modified according to experimental results.The modified CFP and the original CFP model experimental data results were compared,and it was found that the modified CFP model had better fitting effects.These results showed that the water exchange mechanism between conduit and matrix is very important for solid-liquid interface reaction,water resource evaluation,and understanding of karst hydrodynamic behavior.
基金supported by the National Natural Science Foundation of China,No.30872898,81371116the Natural Science Foundation of Beijing,No.7132173
文摘Microspheres containing nerve growth factor for sustained release were prepared by a compound method, and implanted into chitosan conduits to repair 10-mm defects on the right buccal branches of the facial nerve in rabbits. In addition, chitosan conduits combined with nerve growth factor or normal saline, as well as autologous nerve, were used as controls. At 90 days post-surgery, the muscular atrophy on the right upper lip was more evident in the nerve growth factor and normal sa- line groups than in the nerve growth factor-microspheres and autologous nerve groups. Electro- physiological analysis revealed that the nerve conduction velocity and amplitude were significantly higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. Moreover, histological observation illustrated that the di- ameter, number, alignment and myelin sheath thickness of myelinated nerves derived from rabbits were higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. These findings indicate that chitosan nerve conduits com- bined with microspheres for sustained release of nerve growth factor can significantly improve facial nerve defect repair in rabbits.
基金supported by the Science and Technology Development Program of Jilin Province in China,No.20110492
文摘The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some respects, but few data comparing the biomechanical factors related to the sciatic nerve are available. In the present study, rabbit models of 10-mm sciatic nerve defects were prepared. The rabbit models were repaired with autologous nerve, a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells, or a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel. After 24 weeks, mechanical testing was performed to determine the stress relaxation and creep parameters. Following sciatic nerve injury, the magnitudes of the stress decrease and strain increase at 7,200 seconds were largest in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group, followed by the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group, and then the autologous nerve group. Hematoxylin-eosin staining demonstrated that compared with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group and the autologous nerve group, a more complete sciatic nerve regeneration was found, including good myelination, regularly arranged nerve fibers, and a completely degraded and resorbed conduit, in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group. These results indicate that bridging 10-mm conduit + bone marrow mesenchymal stem sciatic nerve defects with a polylactic glycolic acid cells + extracellular matrix gel construct increases the stress relaxation under a constant strain, reducing anastomotic tension. Large elongations under a constant physiological load can limit the anastomotic opening and shift, which is beneficial for the regeneration and functional reconstruction of sciatic nerve. Better regeneration was found with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel grafts than with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells grafts and the autologous nerve grafts.
基金supported by grants from the National Program on Key Basic Research Project of China(973 Program),No.2014CB542200Program for Innovative Research Team in University of Ministry of Education of China,No.IRT1201+1 种基金the National Natural Science Foundation of China,No.31271284,31171150,81171146,30971526,31100860,31040043,31371210Program for New Century Excellent Talents in University of Ministry of Education of China,No.BMU20110270
文摘The clinical effects of 2-mm small gap sleeve bridging of the biological conduit to repair periph- eral nerve injury are better than in the traditional epineurium suture, so it is possible to replace the epineurium suture in the treatment of peripheral nerve injury. This study sought to identify the regeneration law of nerve fibers in the biological conduit. A nerve regeneration chamber was constructed in models of sciatic nerve injury using 2-mm small gap sleeve bridging of a biodegradable biological conduit. The results showed that the biological conduit had good his- tocompatibility. Tissue and cell apoptosis in the conduit apparently lessened, and regenerating nerve fibers were common. The degeneration regeneration law of Schwann cells and axons in the conduit was quite different from that in traditional epineurium suture. During the prime period for nerve fiber regeneration (2-8 weeks), the number of Schwann cells and nerve fibers was higher in both proximal and distal ends, and the effects of the small gap sleeve bridging method were better than those of the traditional epineurium suture. The above results provide an objec- tive and reliable theoretical basis for the clinical application of the biological conduit small gap sleeve bridging method to repair peripheral nerve injury.
基金supported by the National Key R&D Program of China,No.2017YFA0104701(to YW)the National Natural Science Foundation of China,No.31771052(to YW)+1 种基金the Natural Science Foundation of Beijing of China,No.7172202(to YW)the PLA Youth Training Project for Medical Science of China,No.16QNP144(to YW)
文摘In recent years, the use of Schwann cell transplantation to repair peripheral nerve injury has attracted much attention. Animal-based studies show that the transplantation of Schwann cells in combination with nerve scaffolds promotes the repair of injured peripheral nerves. Autologous Schwann cell transplantation in humans has been reported recently. This article reviews current methods for removing the extracellular matrix and analyzes its composition and function. The development and secretory products of Schwann cells are also reviewed. The methods for the repair of peripheral nerve injuries that use myelin and Schwann cell transplantation are assessed. This survey of the literature data shows that using a decellularized nerve conduit combined with Schwann cells represents an effective strategy for the treatment of peripheral nerve injury. This analysis provides a comprehensive basis on which to make clinical decisions for the repair of peripheral nerve injury.
基金supported by grants from the National Program on Key Basic Research Project of China(973 Program),No.2014CB542201Program for Innovative Research Team in University of Ministry of Education of China,No.IRT1201+2 种基金the National Natural Science Foundation of China,No.31271284,31171150,81171146,30971526,31100860,31040043Program for New Century Excellent Talents in University of Ministry of Education of China,No.BMU20110270the Natural Science Foundation of Beijing of China,No.7142164
文摘We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker) and glial fibrillary acidic protein (glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvi- ronment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.
基金funded by National Program on Key Basic Research Project of China(973 Program),No.2014CB542200the National Natural Science Foundation of China,No.31171150,31271284,30801169+2 种基金the Chinese Educational Ministry New Century Excellent Talent Support Project,No.BMU20110270the Beijing City Science&Technology New Star Classification,No.2008A010the Ministry of Education New Teachers of Institutions of Higher Learning Doctoral Fund,No.20070001780
文摘Previous studies have demonstrated that deacetyl chitin conduit nerve bridging or electrical stimulation can effectively promote the regeneration of the injured peripheral nerve. We hypoth-esized that the combination of these two approaches could result in enhanced regeneration. Rats with right sciatic nerve injury were subjected to deacetyl chitin conduit bridging combined with electrical stimulation (0.1 ms, 3 V, 20 Hz, for 1 hour). At 6 and 12 weeks after treatment, nerve conduction velocity, myelinated axon number, ifber diameter, axon diameter and the thickness of the myelin sheath in the stimulation group were better than in the non-stimulation group. The results indicate that deacetyl chitin conduit bridging combined with temporary electrical stimu-lation can promote peripheral nerve repair.
文摘As patients with carcinoma of the esophagus live longer, complications associated with the use of a gastric conduit are increasing. Ulcers form in the gastric conduit in 6.6% to 19.4% of patients. There are a few reports of perforation of a gastric conduit in the English literature. Almost all of these were associated with serious complications. We report a patient who developed a tension pneumothorax consequent to spontaneous perforation of an ulcer in the gastric conduit 7 years after the index surgery in a patient with carcinoma of the gastroesophageal junction. He responded well to conservative management. Complications related to a gastric conduit can be because of multiple factors. Periodic endoscopic surveillance of gastric conduits should be considered as these are at a higher risk of ulcer formation than a normal stomach. Long term treatment with proton pump inhibitors may decrease complications. There are no guidelines for the treatment of a perforated gastric conduit ulcer and the management should be individualized.
文摘A 53-year-old male developed cervical esophageal stenosis after esophageal bypass surgery using a right colon conduit.The esophageal bypass surgery was performed to treat multiple esophageal strictures resulting from corrosive ingestion three years prior to presentation.Although the patient underwent several endoscopic stricture dilatations after surgery,he continued to suffer from recurrent esophageal stenosis.We planned cervical patch esophagoplasty with a pedicled skin flap of sternocleidomastoid(SCM) muscle.Postoperative recovery was successful,and the patient could eat a solid meal without difficulty and has been well for 18 mo.SCM flap esophagoplasty is an easier and safer method of managing complicated and recurrent cervical esophageal strictures than other operations.
文摘Treatment of peripheral nerve injuries remains a challenge to modern medicine due to the com-plexity of the neurobiological nerve regenerating process. There is a greater challenge when the transected nerve ends are not amenable to primary end-to-end tensionless neurorraphy. When facing a segmental nerve defect, great effort has been made to develop an alternative to the au-tologous nerve graft in order to circumvent morbidity at donor site, such as neuroma formation, scarring and permanent loss of function. Tubolization techniques have been developed to bridge nerve gaps and have been extensively studied in numerous experimental and clinical trials. The use of a conduit intends to act as a vehicle for moderation and modulation of the cellular and molecular ambience for nerve regeneration. Among several conduits, vein tubes were validated for clinical application with improving outcomes over the years. This article aims to address the investigation and treatment of segmental nerve injury and draw the current panorama on the use of vein tubes as an autogenous nerve conduit.
基金supported by the National Natural Science Foundation of China,No.31771052(to YW)the National Basic Research Program of China(973 Program),No.2014CB542201(to JP)+4 种基金the National Key Research and Development Program of China,No.2016YFC1101601(to QZ),2017YFA0104702(to YW)the PLA General Hospital Translational Medicine Project of China,No.2016TM-030(to QZ)the Beijing Municipal Natural Science Foundation of China,No.7172202(to YW)the PLA Youth Training Project for Medical Science,China,No.16QNP144(to YW)the Beijing Municipal Science and Technology Project,China,No.Z161100005016059(to YW)
文摘Nerve conduits enhance nerve regeneration in the repair of long-distance peripheral nerve defects. To help optimize the effectiveness of nerve conduits for nerve repair, we developed a multi-step electrospinning process for constructing nerve guide conduits with aligned nanofibers. The alignment of the nerve guide conduits was characterized by scanning electron microscopy and fast Fourier transform. The mechanical performance of the nerve guide conduits was assessed by testing for tensile strength and compression resistance. The biological performance of the aligned fibers was examined using Schwann cells, PC12 cells and dorsal root ganglia in vitro. Immunohistochemistry was performed for the Schwann cell marker S100 and for the neurofilament protein NF200 in PC12 cells and dorsal root ganglia. In the in vivo experiment, a 1.5-cm defect model of the right sciatic nerve in adult female Sprague-Dawley rats was produced and bridged with an aligned nerve guide conduit. Hematoxylin-eosin staining and immunohistochemistry were used to observe the expression of ATF3 and cleaved caspase-3 in the regenerating matrix. The recovery of motor function was evaluated using the static sciatic nerve index. The number of myelinated fibers, axon diameter, fiber diameter, and myelin thickness in the distal nerve were observed by electron microscopy. Gastrocnemius muscle mass ratio was also determined. The analyses revealed that aligned nanofiber nerve guide conduits have good mechanical properties and can induce Schwann cells, PC12 cells and dorsal root ganglia to aggregate along the length of the nanofibers, and promote the growth of longer axons in the latter two(neuronal) cell types. The aligned fiber nerve conduits increased the expression of ATF3 and cleaved caspase-3 at the middle of the regenerative matrix and at the distal nerve segment, improved sciatic nerve function, increased muscle mass of the gastrocnemius muscle, and enhanced recovery of distal nerve ultrastructure. Collectively, the results show that highly aligned nanofibers improve the performance of the nerve conduit bridge, and enhance its effectiveness in repairing peripheral nerve defects.
基金supported by the International Technology Cooperation Program,No.S2014ZR0393
文摘When repairing nerves with adhesives, most researchers place glue directly on the nerve stumps, but this method does not fix the nerve ends well and allows glue to easily invade the nerve ends. In this study, we established a rat model of completely transected sciatic nerve injury and re- paired it using a modified 1 cm-length conduit with inner diameter of 1.5 mm. Each end of the cylindrical conduit contains a short linear channel, while the enclosed central tube protects the nerve ends well Nerves were repaired with 2-octyl-cyanoacrylate and suture, which complement the function of the modified conduit. The results demonstrated that for the same conduit, the av- erage operation time using the adhesive method was much shorter than with the suture method. No significant differences were found between the two groups in sciatic function index, motor evoked potential latency, motor evoked potential amplitude, muscular recovery rate, number of medullated nerve fibers, axon diameter, or medullary sheath thickness. Thus, the adhesive method for repairing nerves using a modified conduit is feasible and effective, and reduces the operation time while providing an equivalent repair effect.
基金the National Natural Science Foundation of Hunan Province,No. 06JJ4022
文摘Previous studies of nerve conduits have investigated numerous properties, such as conduit luminal structure and neurotrophic factor incorporation, for the regeneration of nerve defects. The present study used a poly(lactic-co-glycolic acid) (PLGA) copolymer to construct a three-dimensional (3D) bionic nerve conduit, with two channels and multiple microtubule lumens, and incorporating two neurotrophic factors, each with their own delivery system, as a novel environment for peripheral nerve regeneration. The efficacy of this conduit in repairing a 1.5 cm sciatic nerve defect was compared with PLGA-alone and PLGA-microfilament conduits, and autologous nerve transplantation. Results showed that compared with the other groups, the 3D bionic nerve conduit had the fastest nerve conduction velocity, largest electromyogram amplitude, and shortest electromyogram latency. In addition, the nerve fiber density, myelin sheath thickness and axon diameter were significantly increased, and the recovery rate of the triceps surae muscle wet weight was lowest. These findings suggest that 3D bionic nerve conduits can provide a suitable microenvironment for peripheral nerve regeneration to efficiently repair sciatic nerve defects. p
基金Project 40373044 supported by the National Natural Science Foundation of China
文摘The Ordovician karst groundwater in the Qiligou basin is an important water supply source. This groundwater has been seriously contaminated in recent years by Cfl4 from a pesticide plant located in the recharge area. The highest concentration of CCl4 in the groundwater is 3909.2μg/L. Large scale tracer experiments were carried out to study the conveying conduits for Cfl4 in the basin on May 1-6, 2005. Nontoxic, edible glucose was used as a tracer and it was detected by spectrophotometric techniques. Well area of the basin, was employed for injecting the tracer X-61, located near the pesticide plant in the southern recharge Ten wells widely located in the groundwater runoff area were used as observing and sampling wells. The results show that the migration of the pollutants is controlled by the water hydrodynamic field and by the development of karst conduits. The tracer did not enter the up-drainage wells, X-49 and X-47, near the injection point because the water levels at these wells are higher than at the injection point. The adjacent well X-62 is close to the injection site, but the tracer reached the well after eleven hours. Wells X-43, X-59, X-58, YY-1 and X-57, located in the syncline axis runoff area, are respectively 2.5, 3.5, 4.33, 4.38 and 5.44 kilometers from the in- jection site. The time for initial appearance of tracer was 4, 4, 2, 6 and 4 hours, respectively. The maximum runoff velocity (well X-58) is over two kilometers per hour, indicating that the karst conduits are well developed along the syncline basin axis. These conduits are the main conveying conduits for groundwater and Cfl4. Closer wells were not necessarily the first to receive tracer. This shows the inhomogeneity in karst development which causes complex runoff, and pollutant migration, patterns.
基金supported by Tonekabon Branch,Islamic Azad University,Tonekabon,Iran,No.73/442453
文摘Our previous studies have histomorphologically confirmed that nanofibrous poly(3-hydroxybutyrate- co-3-hydroxyvalerate) conduit can be used to repair 30-mm-long sciatic nerve defects. However, the repair effects on rat behaviors remain poorly understood. In this study, we used nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) conduit and autologous sciatic nerve to bridge 30-ram-long rat sciatic nerve gaps. Within 4 months after surgery, rat sciatic nerve functional re- covery was evaluated per month by behavioral analyses, including toe out angle, toe spread anal- ysis, walking track analysis, extensor postural thrust, swimming test, open-field analysis and no- ciceptive function. Results showed that rat sciatic nerve functional recovery was similar after nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) conduit and autologous nerve grafting. These findings suggest that nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) conduit is suitable in use for repair of long-segment sciatic nerve defects.