The superconducting joint of the NbTi Cable-in -conduit Conductor (CICC) has been developed and tested on the magnet test facility at Institute of Plasma Physics, Chinese Academy of Sciences. The CICC is composed of (...The superconducting joint of the NbTi Cable-in -conduit Conductor (CICC) has been developed and tested on the magnet test facility at Institute of Plasma Physics, Chinese Academy of Sciences. The CICC is composed of (2NbTi+lCu)x3x3x(6+ltube) strands each with 0.85 mm in diameter, which has been developed for a central solenoid model coil. The effective length of the joint is about 500 mm. There have been two common fabrication modes, one of them is to integrate the 2 CICC terminals with the copper substrate via lead-soldering, and the other is to mechanically compress the above two parts into an integrated unit. In the current range from 2 kA to 10 kA the joint resistance changes slightly. Up to now, 11 TF magnets, a central solenoid model coil, a central solenoid prototype coil, and a large PF model coil of PF large coil have been completed via the latter joint in the test facility.展开更多
The conductors of both the toroidal field (TF) and poloidal field (PF) coils of EAST are NiTi cable-in-conduit conductors (CICCs). The sizes of this type of CICC are 20.3 mm×20.3 mm and 18.5 mm×18.5 mm...The conductors of both the toroidal field (TF) and poloidal field (PF) coils of EAST are NiTi cable-in-conduit conductors (CICCs). The sizes of this type of CICC are 20.3 mm×20.3 mm and 18.5 mm×18.5 mm respectively. A relevant R&D program has been carried out for three years at the Research and Manufacture Center (RMC) of the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) to acquire the manufacturing techniques and master the behavior of the testing joints. Based on the experience gained from the manufacture and test of a sub-cable joint, three kinds of joints were made. The final design was determined after carefully evaluating their simple mechanism, good cooling line, lower AC loss and resistance, compact size, and convenience for manufacture and on-site assembly. Two steps were developed to carry out the final joint. The first step was forming the terminals' super conductors. The second step was clamping the two terminals together to ensure their good contact with the copper conductor sole. The two terminals could be connected in different directions to get two kinds of conductor connections. A hydraulic instrument was developed to impact the terminals. It could impact the terminals in high accuracy in terms of their size and shape. The cross section of the terminal was tried in circular and an elliptic shape. Five full-size joints were made according to the design and then tested. When they were tested in bathing cold condition, their resistance was from 2 nΩ to 4 nΩ The latest joint was tested in real working conditions where the resistance varied from 2 nΩ to 12 nΩ, depending on the testing current ranging from 2 kA to 10 kA.展开更多
文摘The superconducting joint of the NbTi Cable-in -conduit Conductor (CICC) has been developed and tested on the magnet test facility at Institute of Plasma Physics, Chinese Academy of Sciences. The CICC is composed of (2NbTi+lCu)x3x3x(6+ltube) strands each with 0.85 mm in diameter, which has been developed for a central solenoid model coil. The effective length of the joint is about 500 mm. There have been two common fabrication modes, one of them is to integrate the 2 CICC terminals with the copper substrate via lead-soldering, and the other is to mechanically compress the above two parts into an integrated unit. In the current range from 2 kA to 10 kA the joint resistance changes slightly. Up to now, 11 TF magnets, a central solenoid model coil, a central solenoid prototype coil, and a large PF model coil of PF large coil have been completed via the latter joint in the test facility.
基金supported by the National Meg-science Engineering Project of the Chinese Government
文摘The conductors of both the toroidal field (TF) and poloidal field (PF) coils of EAST are NiTi cable-in-conduit conductors (CICCs). The sizes of this type of CICC are 20.3 mm×20.3 mm and 18.5 mm×18.5 mm respectively. A relevant R&D program has been carried out for three years at the Research and Manufacture Center (RMC) of the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) to acquire the manufacturing techniques and master the behavior of the testing joints. Based on the experience gained from the manufacture and test of a sub-cable joint, three kinds of joints were made. The final design was determined after carefully evaluating their simple mechanism, good cooling line, lower AC loss and resistance, compact size, and convenience for manufacture and on-site assembly. Two steps were developed to carry out the final joint. The first step was forming the terminals' super conductors. The second step was clamping the two terminals together to ensure their good contact with the copper conductor sole. The two terminals could be connected in different directions to get two kinds of conductor connections. A hydraulic instrument was developed to impact the terminals. It could impact the terminals in high accuracy in terms of their size and shape. The cross section of the terminal was tried in circular and an elliptic shape. Five full-size joints were made according to the design and then tested. When they were tested in bathing cold condition, their resistance was from 2 nΩ to 4 nΩ The latest joint was tested in real working conditions where the resistance varied from 2 nΩ to 12 nΩ, depending on the testing current ranging from 2 kA to 10 kA.