A new research perspective is proposed to optimize the topology of truss structure by force cone method,which involves force cone drawing rules and growth rules.Through the comparison with the mature variable density ...A new research perspective is proposed to optimize the topology of truss structure by force cone method,which involves force cone drawing rules and growth rules.Through the comparison with the mature variable density topology optimization method,the effectiveness of force cone method is verified.This kind of new method is simple and easy to understand(no need to master complex structural optimization design theory).Besides,it is time-saving in finite element calculations,and can obtain an optimized truss layout easily.By drawing the force cone,its application on a large radio telescope’s back frame structure shows that,compared with the existing one in terms of structural stiffness,Root Mean Square(RMS)precision,and beam stress distribution,the optimized back frame using the force cone method has higher stiffness,better RMS,more uniform stress,and lighter weight.展开更多
Compared with scattering from a rough surface only, composite scattering from a target above a rough surface has become so practical that it is a subject of great interest. At present, this problem has been solved by ...Compared with scattering from a rough surface only, composite scattering from a target above a rough surface has become so practical that it is a subject of great interest. At present, this problem has been solved by some numerical methods which will produce an enormous calculation amount. In order to overcome this shortcoming, the reciprocity theorem (RT) and the method of equivalent edge currents (MEC) are used in this paper. Due to the advantage of RT, the difficulty in computing the secondary scattered fields is reduced. Simultaneously, MEC, a high-frequency method with edge diffraction considered, is used to calculate the scattered field from the cone-cylinder target with a high accuracy and efficiency. The backscattered field and the polarization currents of the rough sea surface are evaluated by the Kirchhoff approximation (KA) method and physical optics (PO) method, respectively. The effects of the backscattering radar cross section (RCS) and the Doppler spectrum on the size of the target and the windspeed of the sea surface for different incident angles are analysed in detail.展开更多
In this paper, we give some new results of common fixed point theorems and coincidence point case for some iterative method. By using of variation iteration method and an effective modification of He’s variation iter...In this paper, we give some new results of common fixed point theorems and coincidence point case for some iterative method. By using of variation iteration method and an effective modification of He’s variation iteration method discusses some integral and differential equations, we give out some new conclusion and more new examples.展开更多
分布式新能源以“点多面广”的特征并入各级配电网,电网呈现新能源多层级接入、一体化消纳的特征。为促进新能源的充分消纳与高效利用,提出了一种多层级配电网新能源最大消纳空间测算模型,并将分布式新能源最大消纳空间测算问题转换为...分布式新能源以“点多面广”的特征并入各级配电网,电网呈现新能源多层级接入、一体化消纳的特征。为促进新能源的充分消纳与高效利用,提出了一种多层级配电网新能源最大消纳空间测算模型,并将分布式新能源最大消纳空间测算问题转换为各层级配电网新能源最大消纳空间测算子问题,实现了各层级配电网分布式新能源最大消纳空间的精确测算。首先,以多层级配电网新能源接入量最大为目标函数,基于Distflow潮流模型建立多层级配电网分布式新能源消纳空间测算模型;然后,针对模型非凸以及求解效率低等问题,基于二阶锥松弛将模型转化为混合整数二阶锥规划模型,采用交替方向乘子法(alternating direction method of multipliers,ADMM),将多层级配电网新能源消纳空间测算问题转化为各级配电网新能源最大消纳空间子问题,将消纳空间模型转化为多层级配电网分布式新能源最大消纳空间分解测算模型;最后,以IEEE 6、7、9、10、12、15测试系统为例,验证该方法的有效性。展开更多
文摘A new research perspective is proposed to optimize the topology of truss structure by force cone method,which involves force cone drawing rules and growth rules.Through the comparison with the mature variable density topology optimization method,the effectiveness of force cone method is verified.This kind of new method is simple and easy to understand(no need to master complex structural optimization design theory).Besides,it is time-saving in finite element calculations,and can obtain an optimized truss layout easily.By drawing the force cone,its application on a large radio telescope’s back frame structure shows that,compared with the existing one in terms of structural stiffness,Root Mean Square(RMS)precision,and beam stress distribution,the optimized back frame using the force cone method has higher stiffness,better RMS,more uniform stress,and lighter weight.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60971067)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070701010)
文摘Compared with scattering from a rough surface only, composite scattering from a target above a rough surface has become so practical that it is a subject of great interest. At present, this problem has been solved by some numerical methods which will produce an enormous calculation amount. In order to overcome this shortcoming, the reciprocity theorem (RT) and the method of equivalent edge currents (MEC) are used in this paper. Due to the advantage of RT, the difficulty in computing the secondary scattered fields is reduced. Simultaneously, MEC, a high-frequency method with edge diffraction considered, is used to calculate the scattered field from the cone-cylinder target with a high accuracy and efficiency. The backscattered field and the polarization currents of the rough sea surface are evaluated by the Kirchhoff approximation (KA) method and physical optics (PO) method, respectively. The effects of the backscattering radar cross section (RCS) and the Doppler spectrum on the size of the target and the windspeed of the sea surface for different incident angles are analysed in detail.
文摘In this paper, we give some new results of common fixed point theorems and coincidence point case for some iterative method. By using of variation iteration method and an effective modification of He’s variation iteration method discusses some integral and differential equations, we give out some new conclusion and more new examples.
文摘分布式新能源以“点多面广”的特征并入各级配电网,电网呈现新能源多层级接入、一体化消纳的特征。为促进新能源的充分消纳与高效利用,提出了一种多层级配电网新能源最大消纳空间测算模型,并将分布式新能源最大消纳空间测算问题转换为各层级配电网新能源最大消纳空间测算子问题,实现了各层级配电网分布式新能源最大消纳空间的精确测算。首先,以多层级配电网新能源接入量最大为目标函数,基于Distflow潮流模型建立多层级配电网分布式新能源消纳空间测算模型;然后,针对模型非凸以及求解效率低等问题,基于二阶锥松弛将模型转化为混合整数二阶锥规划模型,采用交替方向乘子法(alternating direction method of multipliers,ADMM),将多层级配电网新能源消纳空间测算问题转化为各级配电网新能源最大消纳空间子问题,将消纳空间模型转化为多层级配电网分布式新能源最大消纳空间分解测算模型;最后,以IEEE 6、7、9、10、12、15测试系统为例,验证该方法的有效性。