AIM:To present the clinical manifestations of 5 autosomal dominant cone-rod dystrophy(ad CORD)patients from two Chinese families with cone-rod homeobox(CRX)mutation(p.R41W),and to explore the clinical heterogeneity of...AIM:To present the clinical manifestations of 5 autosomal dominant cone-rod dystrophy(ad CORD)patients from two Chinese families with cone-rod homeobox(CRX)mutation(p.R41W),and to explore the clinical heterogeneity of ad CORD with CRX mutation(p.R41W).METHODS:Interrogation and ophthalmological examinations were undertaken in all patients and unaffected members.Analysis of clinical features was performed by visual acuity,slit lamp examination,visual field examination,fundoscopy,autofluorescence and spectral domain optical coherence tomography.Targeted next-generation sequencing was applied as a useful tool to identify the causative mutation of CORD genes.RESULTS:A CRX missense mutation c.121C>T was identified in all patients,resulting in an amino acid change from arginine acid to tryptophan(p.R41W).The patients presented with early onset,progressive and different severities with CORD.CONCLUSION:This is the first report of the clinical phenotype of CRX mutation(p.R41W)in Chinese families,and the mutation can lead to a wide range of various retinal phenotypes.展开更多
AIM:To investigate the proliferation regulatory effect of cone-rod homeobox(CRX)in retinal pigment epithelium(RPE)and retinoblastoma(RB)cells to explore the potential application and side effect(oncogenic potential)of...AIM:To investigate the proliferation regulatory effect of cone-rod homeobox(CRX)in retinal pigment epithelium(RPE)and retinoblastoma(RB)cells to explore the potential application and side effect(oncogenic potential)of CRXbased gene therapy in RPE-based retinopathies.METHODS:Adult human retinal pigment epithelial(ARPE)-19 and human retinal pigment epithelial(RPE)-1 cells and Y79 RB cell were used in the study.Genetic manipulation was performed by lentivirus-based technology.The cell proliferation was determined by a CellTiter-Glo Reagent.The mRNA and protein levels were determined by quantitative real-time polymerase chain reaction(qPCR)and Western blot assay.The transcriptional activity of the promoter was determined by luciferase reporter gene assay.The bindings between CRX and transcription factor 7(TCF7)promoter as well as TCF7 and the promoters of TCF7 target genes were examined by chromatin immunoprecipitation(ChIP)assay.The transcription of the TCF7 was determined by a modified nuclear run-on assay.RESULTS:CRX overexpression and knockdown significantly increased(n=3,P<0.05 in all the cells)and decreased(n=3,P<0.01 in all the cells)the proliferation of RPE and RB cells.CRX overexpression and knockdown significantly increased and deceased the mRNA levels of Wnt signaling target genes[including MYC proto-oncogene(MYC),JUN,FOS like 1(FOSL1),CCND1,cyclin D2(CCND2),cyclin D3(CCND3),cellular communication network factor 4(CCN4),peroxisome proliferator activated receptor delta(PPARD),and matrix metallopeptidase 7(MMP7)]and the luciferase activity driven by the Wnt signaling transcription factor(TCF7).TCF7 overexpression and knockdown significantly increased and decreased the proliferation of RPE and RB cells and depletion of TCF7 significantly abolished the stimulatory effect of CRX on the proliferation of RPE and RB cells.CRX overexpression and knockdown significantly increased and decreased the mRNA level of TCF7 and the promoter of TCF7 was significantly immunoprecipitated by CRX antibody.CONCLUSION:CRX transcriptionally activates TCF7 to promote the proliferation of RPE and RB cells in vitro.CRX is a potential target for RPE-based regenerative medicine.The potential risk of this strategy,tumorigenic potential,should be considered.展开更多
The sine oculis homeobox homolog(SIX)family,a group of transcription factors characterized by a conserved DNA-binding homology domain,plays a critical role in orchestrating embryonic development and organogenesis acro...The sine oculis homeobox homolog(SIX)family,a group of transcription factors characterized by a conserved DNA-binding homology domain,plays a critical role in orchestrating embryonic development and organogenesis across various organisms,including humans.Comprising six distinct members,from SIX1 to SIX6,each member contributes uniquely to the development and differentiation of diverse tissues and organs,underscoring the versatility of the SIX family.Dysregulation or mutations in SIX genes have been implicated in a spectrum of developmental disorders,as well as in tumor initiation and progression,highlighting their pivotal role in maintaining normal developmental trajectories and cellular functions.Efforts to target the transcriptional complex of the SIX gene family have emerged as a promising strategy to inhibit tumor development.While the development of inhibitors targeting this gene family is still in its early stages,the significant potential of such interventions holds promise for future therapeutic advances.Therefore,this review aimed to comprehensively explore the advancements in understanding the SIX family within gastrointestinal cancers,focusing on its critical role in normal organ development and its implications in gastrointestinal cancers,including gastric,pancreatic,colorectal cancer,and hepatocellular carcinomas.In conclusion,this review deepened the understanding of the functional roles of the SIX family and explored the potential of utilizing this gene family for the diagnosis,prognosis,and treatment of gastrointestinal cancers.展开更多
Homeobox(HOX)C9,a member of the HOX family,is an important transcription factor,and it plays a significant role in various biological processes.This family of genes is highly valued for their essential roles in establ...Homeobox(HOX)C9,a member of the HOX family,is an important transcription factor,and it plays a significant role in various biological processes.This family of genes is highly valued for their essential roles in establishing and maintaining the body axis during embryonic development and adult tissues.Further,HOXC9 plays a central role in neuronal differentiation,angiogenesis,and adipose distribution,which are essential for the development of the nervous system,maturation of tissues and organs,and maintenance of energy balance and metabolic health.Recent research has found that abnormal HOXC9 expression is closely associated with the development and progression of various tumor types.The HOXC9 expression level can be an indicator of tumor prognosis.Therefore,elucidating the association between HOXC9 expression and its regulatory mechanisms and tumorigenesis can provide novel insights on the diagnosis and treatment of patients with cancer.展开更多
Homeobox genes, including HOX and non-HOX genes, have been identified to be expressed aberrantly in solid tumors. In gastrointestinal(GI) cancers, most studies have focused on the function of non-HOX genes including c...Homeobox genes, including HOX and non-HOX genes, have been identified to be expressed aberrantly in solid tumors. In gastrointestinal(GI) cancers, most studies have focused on the function of non-HOX genes including caudal-related homeobox transcription factor 1(CDX1) and CDX2. CDX2 is a crucial factor in the development of pre-cancerous lesions such as Barrett's esophagus or intestinal metaplasia in the stomach, and its tumor suppressive role has been investigated in colorectal cancers. Recently, several HOX genes were reported to have specific roles in GI cancers; for example, HOXA13 in esophageal squamous cell cancer and HOXB7 in stomach and colorectal cancers. HOXD10 is upregulated in colorectal cancer while it is silenced epigenetically in gastric cancer. Thus, it is essential to examine the differential expression pattern of various homeobox genes in specific tumor types or cell lineages, and understand their underlying mechanisms. In this review, we summarize the available research on homeobox genes and present their potential value for the prediction of prognosis in GI cancers.展开更多
AIM: To investigate the expression of visual system homeobox 1(VSX1) and myofibroblast marker alpha smooth muscle actin(α-SMA) in keratoconus(KC). METHODS: Thirty corneal tissue were collected from KC patients after ...AIM: To investigate the expression of visual system homeobox 1(VSX1) and myofibroblast marker alpha smooth muscle actin(α-SMA) in keratoconus(KC). METHODS: Thirty corneal tissue were collected from KC patients after corneal transplantation and 15 normal donor corneas were obtained. All corneal tissues divided into 4 parts for different detections. Scanning electron microscopy was used to observe the ultrastructure of the specimens. VSX1 and α-SMA localization in cornea tissues was detected using immunofluorescence histochemistry. Reverse transcription-quantitative polymerase chain reaction(RT-qPCR) and Western blot were performed to analyze the expression level of VSX1 and α-SMA. RESULTS: Compared to normal cornea tissue, the collagen fibers in KC stroma were distortional and attenuated and keratocytes were abnormally changed. VSX1 and α-SMA located in the corneal stroma. The mRNA and protein expression level of VSX1 in KC were about 3 times as high as that of normal tissue(P<0.001). α-SMA was hardly expressed in the normal corneas, however, its expression in the KC was about 1.5 times higher than that of the normal corneas(P<0.0001). CONCLUSION: Compared with normal corneal the expression of VSX1 and α-SMA in KC both increased. VSX1 is related to the activation of keratocytes and involved in the pathogenesis of keratoconus.展开更多
Homeobox transcription factors participate in the growth and development of plants by regulating cell differentiation, morphogenesis and environmental signal response. To reveal the functions of these transcription fa...Homeobox transcription factors participate in the growth and development of plants by regulating cell differentiation, morphogenesis and environmental signal response. To reveal the functions of these transcription factors in rice, we constructed the RNAi vectors of OsHox9, a member of homeobox family, and analyzed the function of OsHox9 using reverse genetics. The plant height and tillering number of RNAi transgenic plants decreased compared with those of wild-type plants. Reverse transcdption-polymerase chain reaction analysis showed that OsHox9 expression reduced in the transgenic plants with phenotypic variance, whereas that in the transgenic plants without phenotypic variance was similar to that in the wild-type plants. This result suggests that the phenotypes of the transgenic plants were caused by RNAi effects. The tissue-specificity of OsHox9 expression indicated that it was expressed in different organs, with high expression in stem apical medstem and young panicles. Subcellular location of OsHox9 demonstrated that it was localized on the cell membrane.展开更多
AIM:To characterize the regeneration-associated stem cell-related phenotype of hepatocyte-derived growth factor receptor(HGFR)-expressing cells in active ulcerative colitis(UC).METHODS:On the whole 38 peripheral blood...AIM:To characterize the regeneration-associated stem cell-related phenotype of hepatocyte-derived growth factor receptor(HGFR)-expressing cells in active ulcerative colitis(UC).METHODS:On the whole 38 peripheral blood samples and 38 colonic biopsy samples from 18 patients with histologically proven active UC and 20 healthy control subjects were collected.After preparing tissue microarrays and blood smears HGFR,caudal type homeobox 2(CDX2),prominin-1(CD133) and Musashi-1conventional and double fluorescent immunolabelings were performed.Immunostained samples were digitalized using high-resolution Mirax Desk instrument,and analyzed with the Mirax TMA Module software.For semiquantitative counting of immunopositive lamina propria(LP) cells 5 fields of view were counted at magnification x 200 in each sample core,then mean ± SD were determined.In case of peripheral blood smears,30 fields of view with 100 μm diameter were evaluated in every sample and the number of immunopositive cells(mean ± SD) was determined.Using 337 nm UVA Laser MicroDissection system at least 5000 subepithelial cells from the lamina propria were collected.Gene expression analysis of HGFR,CDX2,CD133,leucine-rich repeat-containing G-protein coupled receptor 5(Lgr5),Musashi-1 and cytokeratin20(CK20) were performed in both laser-microdisscted samples and blood samples by using real time reverse transcription polymerase chain reaction(RT-PCR).RESULTS:By performing conventional and double fluorescent immunolabelings confirmed by RT-PCR,higher number of HGFR(blood:6.7 ± 1.22 vs 38.5 ±3.18;LP:2.25 ± 0.85 vs 9.22 ± 0.65;P < 0.05),CDX2(blood:0 vs 0.94 ± 0.64;LP:0.75 ± 0.55 vs 2.11± 0.75;P < 0.05),CD133(blood:1.1 ± 0.72 vs 8.3± 1.08;LP:11.1 ± 0.85 vs 26.28 ± 1.71;P < 0.05)and Musashi-1(blood and LP:0 vs scattered) positive cells were detected in blood and lamina propria of UC samples as compared to controls.HGFR/CDX2(blood:0 vs 1± 0.59;LP:0.8 ± 0.69 vs 2.06 ± 0.72,P < 0.05)and Musashi-1/CDX2(blood and LP:0 vs scattered) coexpressions were found in blood and lamina propria of UC samples.HGFR/CD133 and CD133/CDX2 coexpressions appeared only in UC lamina propria samples.CDX2,Lgr5 and Musashi-1 expressions in UC blood samples were not accompanied by CK20 mRNA expression.CONCLUSION:In active UC,a portion of circulating HGFR-expressing cells are committed to the epithelial lineage,and may participate in mucosal regeneration by undergoing mesenchymal-to-epithelial transition.展开更多
The proper development of uterus to a state of receptivity and the attainment of implantation competency for blastocyst are 2 indispensable aspects for implantation,which is considered to be a critical event for succe...The proper development of uterus to a state of receptivity and the attainment of implantation competency for blastocyst are 2 indispensable aspects for implantation,which is considered to be a critical event for successful pregnancy. Like many developmental processes, a large number of transcription factors, such as homeobox genes, have been shown to orchestrate this complicated but highly organized physiological process during implantation. In this review, we focus on progress in studies of the role of homeobox genes, especially the Hox and Msx gene families, during implantation, together with subsequent development of post-implantation uterus and related reproductive defects in both mouse models and humans, that have led to better understanding of how implantation is precisely regulated and provide new insights into infertility.展开更多
AIM: To investigate the effect of pituitary homeobox 1 (PITX1) expression in cases of human gastric cancer on cancer differentiation and progression, and carcinogenesis. METHODS: Using polyclonal PITX1 antibodies,...AIM: To investigate the effect of pituitary homeobox 1 (PITX1) expression in cases of human gastric cancer on cancer differentiation and progression, and carcinogenesis. METHODS: Using polyclonal PITX1 antibodies, we studied the expression of PITX1 in normal gastric mucosa, atypical hyperplasia, intestinal metaplasia, and cancer tissue samples from 83 gastric cancer patients by immunohistochemistry. Moreover, semi-reverse transcription polymerase chain reaction (semi-RT-PCR) was performed to detect the mRNA level of PITX1 in three gastric cancer cell lines and a normal gastric epithelial cell line. Subsequently, somatic mutations of the PITX1 gene in 71 gastric cancer patients were analyzed by a combination of denaturing high performance liquid chromatography (DHPLC) and DNA sequencing. RESULTS: Immunohistochemistry showed that PITXl was strongly or moderately expressed in the parietal cells of normal gastric mucosa (100%), while 55 (66.3%) out of 83 samples of gastric cancers showed decreased PITXl expression. Moreover, PITXl expression was reduced in 20 out of 28 cases (71.5%) of intestinal metaplasia, but in only 1 out of 9 cases (11%) of atypical hyperplasia. More importantly, PITXl expression was significantly associated with the differentiation, position and invasion depth of gastric cancers (r = -0.316, P 〈 0.01; r = 0.213, P 〈 0.05; r = -0.259, P 〈 0.05, respectively). Similarly, levels of PITXl mRNA were significantly decreased in 2 gastric cancer cell lines, BGC-823 and SGC-7901, compared with the normal gastric epithelial cell line GES-1 (0.306 ± 0.060 vs 0.722 ± 0.102, P 〈 0.05; 0.356 ± 0.081 vs 0.722 ± 0.102, P 〈 0.05, respectively). Nevertheless, no somatic mutation of PITX1 gene was found in 71 samples of gastric cancer by DHPLC analysis followed by sequencing. CONCLUSION: Down-regulation of PITX1 may be a frequent molecular event in gastric carcinogenesis. Aberrant levels of PITXl expression may be closely correlated with the progression and differentiation of gastric cancer,展开更多
BACKGROUND The distal-less homeobox(DLX)gene family plays an important role in the development of several tumors.However,the expression pattern,prognostic and diagnostic value,possible regulatory mechanisms,and the re...BACKGROUND The distal-less homeobox(DLX)gene family plays an important role in the development of several tumors.However,the expression pattern,prognostic and diagnostic value,possible regulatory mechanisms,and the relationship between DLX family genes and immune infiltration in colon cancer have not been systematically reported.AIM We aimed to comprehensively analyze the biological role of the DLX gene family in the pathogenesis of colon cancer.METHODS Colon cancer tissue and normal colon tissue samples were collected from the Cancer Genome Atlas and Gene Expression Omnibus databases.Wilcoxon rank sum test and t-test were used to assess DLX gene family expression between colon cancer tissue and unpaired normal colon tissue.cBioPortal was used to analyze DLX gene family variants.R software was used to analyze DLX gene expression in colon cancer and the relationship between DLX gene family expression and clinical features and correlation heat map.The survival package and Cox regression module were used to assess the prognostic value of the DLX gene family.The pROC package was used to analyze the diagnostic value of the DLX gene family.R software was used to analyze the possible regulatory mechanisms of DLX gene family members and related genes.The GSVA package was used to analyze the relationship between the DLX gene family and immune infiltration.The ggplot2,the survminer package,and the clusterProfiler package were used for visualization.RESULTS DLX1/2/3/4/5 were significantly aberrantly expressed in colon cancer patients.The expression of DLX genes were associated with M stage,pathologic stage,primary therapy outcome,residual tumor,lymphatic invasion,T stage,N stage,age,perineural invasion,and history of colon polyps.DLX5 was independently correlated with the prognosis of colon cancer in multivariate analysis.DLX1/2/3/4/5/6 were involved in the development and progression of colon cancer by participating in immune infiltration and associated pathways,including the Hippo signaling pathway,the Wnt signaling pathway,several signaling pathways regulating the pluripotency of stem cells,and Staphylococcus aureus infection.CONCLUSION The results of this study suggest a possible role for the DLX gene family as potential diagnostic or prognostic biomarkers and therapeutic targets in colon cancer.展开更多
文摘AIM:To present the clinical manifestations of 5 autosomal dominant cone-rod dystrophy(ad CORD)patients from two Chinese families with cone-rod homeobox(CRX)mutation(p.R41W),and to explore the clinical heterogeneity of ad CORD with CRX mutation(p.R41W).METHODS:Interrogation and ophthalmological examinations were undertaken in all patients and unaffected members.Analysis of clinical features was performed by visual acuity,slit lamp examination,visual field examination,fundoscopy,autofluorescence and spectral domain optical coherence tomography.Targeted next-generation sequencing was applied as a useful tool to identify the causative mutation of CORD genes.RESULTS:A CRX missense mutation c.121C>T was identified in all patients,resulting in an amino acid change from arginine acid to tryptophan(p.R41W).The patients presented with early onset,progressive and different severities with CORD.CONCLUSION:This is the first report of the clinical phenotype of CRX mutation(p.R41W)in Chinese families,and the mutation can lead to a wide range of various retinal phenotypes.
基金Supported by grants from the Zhejiang Medicine and Health Science and Technology Project(No.2018KY748)Ningbo Natural Science Foundation(No.2019A610352)+3 种基金Ningbo Major Scientific and Technological Research and“Unveiling and Commanding”Project(No.2021Z054)Chongqing Science&Technology Commission(No.CSTB2022NSCQ-MSX1413)Ningbo Clinical Research Center for Ophthalmology(No.2022L003)Ningbo Key Laboratory for Neuroretinopathy Medical Research,and the Project of NINGBO Leading Medical&Health Discipline(No.2016-S05).
文摘AIM:To investigate the proliferation regulatory effect of cone-rod homeobox(CRX)in retinal pigment epithelium(RPE)and retinoblastoma(RB)cells to explore the potential application and side effect(oncogenic potential)of CRXbased gene therapy in RPE-based retinopathies.METHODS:Adult human retinal pigment epithelial(ARPE)-19 and human retinal pigment epithelial(RPE)-1 cells and Y79 RB cell were used in the study.Genetic manipulation was performed by lentivirus-based technology.The cell proliferation was determined by a CellTiter-Glo Reagent.The mRNA and protein levels were determined by quantitative real-time polymerase chain reaction(qPCR)and Western blot assay.The transcriptional activity of the promoter was determined by luciferase reporter gene assay.The bindings between CRX and transcription factor 7(TCF7)promoter as well as TCF7 and the promoters of TCF7 target genes were examined by chromatin immunoprecipitation(ChIP)assay.The transcription of the TCF7 was determined by a modified nuclear run-on assay.RESULTS:CRX overexpression and knockdown significantly increased(n=3,P<0.05 in all the cells)and decreased(n=3,P<0.01 in all the cells)the proliferation of RPE and RB cells.CRX overexpression and knockdown significantly increased and deceased the mRNA levels of Wnt signaling target genes[including MYC proto-oncogene(MYC),JUN,FOS like 1(FOSL1),CCND1,cyclin D2(CCND2),cyclin D3(CCND3),cellular communication network factor 4(CCN4),peroxisome proliferator activated receptor delta(PPARD),and matrix metallopeptidase 7(MMP7)]and the luciferase activity driven by the Wnt signaling transcription factor(TCF7).TCF7 overexpression and knockdown significantly increased and decreased the proliferation of RPE and RB cells and depletion of TCF7 significantly abolished the stimulatory effect of CRX on the proliferation of RPE and RB cells.CRX overexpression and knockdown significantly increased and decreased the mRNA level of TCF7 and the promoter of TCF7 was significantly immunoprecipitated by CRX antibody.CONCLUSION:CRX transcriptionally activates TCF7 to promote the proliferation of RPE and RB cells in vitro.CRX is a potential target for RPE-based regenerative medicine.The potential risk of this strategy,tumorigenic potential,should be considered.
基金Supported by the National Natural Science Foundation of China,No.82273457the Natural Science Foundation of Guangdong Province,No.2023A1515012762 and No.2021A1515010846+1 种基金Special Grant for Key Area Programs of Guangdong Department of Education,No.2021ZDZX2040Science and Technology Special Project of Guangdong Province,No.210715216902829.
文摘The sine oculis homeobox homolog(SIX)family,a group of transcription factors characterized by a conserved DNA-binding homology domain,plays a critical role in orchestrating embryonic development and organogenesis across various organisms,including humans.Comprising six distinct members,from SIX1 to SIX6,each member contributes uniquely to the development and differentiation of diverse tissues and organs,underscoring the versatility of the SIX family.Dysregulation or mutations in SIX genes have been implicated in a spectrum of developmental disorders,as well as in tumor initiation and progression,highlighting their pivotal role in maintaining normal developmental trajectories and cellular functions.Efforts to target the transcriptional complex of the SIX gene family have emerged as a promising strategy to inhibit tumor development.While the development of inhibitors targeting this gene family is still in its early stages,the significant potential of such interventions holds promise for future therapeutic advances.Therefore,this review aimed to comprehensively explore the advancements in understanding the SIX family within gastrointestinal cancers,focusing on its critical role in normal organ development and its implications in gastrointestinal cancers,including gastric,pancreatic,colorectal cancer,and hepatocellular carcinomas.In conclusion,this review deepened the understanding of the functional roles of the SIX family and explored the potential of utilizing this gene family for the diagnosis,prognosis,and treatment of gastrointestinal cancers.
文摘Homeobox(HOX)C9,a member of the HOX family,is an important transcription factor,and it plays a significant role in various biological processes.This family of genes is highly valued for their essential roles in establishing and maintaining the body axis during embryonic development and adult tissues.Further,HOXC9 plays a central role in neuronal differentiation,angiogenesis,and adipose distribution,which are essential for the development of the nervous system,maturation of tissues and organs,and maintenance of energy balance and metabolic health.Recent research has found that abnormal HOXC9 expression is closely associated with the development and progression of various tumor types.The HOXC9 expression level can be an indicator of tumor prognosis.Therefore,elucidating the association between HOXC9 expression and its regulatory mechanisms and tumorigenesis can provide novel insights on the diagnosis and treatment of patients with cancer.
基金Supported by the Korean College of Helicobacter and Upper Gastrointestinal Research Foundation Granta Korea University Grant,No.K1512661
文摘Homeobox genes, including HOX and non-HOX genes, have been identified to be expressed aberrantly in solid tumors. In gastrointestinal(GI) cancers, most studies have focused on the function of non-HOX genes including caudal-related homeobox transcription factor 1(CDX1) and CDX2. CDX2 is a crucial factor in the development of pre-cancerous lesions such as Barrett's esophagus or intestinal metaplasia in the stomach, and its tumor suppressive role has been investigated in colorectal cancers. Recently, several HOX genes were reported to have specific roles in GI cancers; for example, HOXA13 in esophageal squamous cell cancer and HOXB7 in stomach and colorectal cancers. HOXD10 is upregulated in colorectal cancer while it is silenced epigenetically in gastric cancer. Thus, it is essential to examine the differential expression pattern of various homeobox genes in specific tumor types or cell lineages, and understand their underlying mechanisms. In this review, we summarize the available research on homeobox genes and present their potential value for the prediction of prognosis in GI cancers.
基金Supported by Natural Science Foundation of Shaanxi Province(No.2017JM8040)Xi’an Science and Technology Project [No.2017116SF/YX010(7)]
文摘AIM: To investigate the expression of visual system homeobox 1(VSX1) and myofibroblast marker alpha smooth muscle actin(α-SMA) in keratoconus(KC). METHODS: Thirty corneal tissue were collected from KC patients after corneal transplantation and 15 normal donor corneas were obtained. All corneal tissues divided into 4 parts for different detections. Scanning electron microscopy was used to observe the ultrastructure of the specimens. VSX1 and α-SMA localization in cornea tissues was detected using immunofluorescence histochemistry. Reverse transcription-quantitative polymerase chain reaction(RT-qPCR) and Western blot were performed to analyze the expression level of VSX1 and α-SMA. RESULTS: Compared to normal cornea tissue, the collagen fibers in KC stroma were distortional and attenuated and keratocytes were abnormally changed. VSX1 and α-SMA located in the corneal stroma. The mRNA and protein expression level of VSX1 in KC were about 3 times as high as that of normal tissue(P<0.001). α-SMA was hardly expressed in the normal corneas, however, its expression in the KC was about 1.5 times higher than that of the normal corneas(P<0.0001). CONCLUSION: Compared with normal corneal the expression of VSX1 and α-SMA in KC both increased. VSX1 is related to the activation of keratocytes and involved in the pathogenesis of keratoconus.
基金supported by the National Natural Science Foundation of China (Grant NO. 31171515)the Tianjin Natural Science Foundation of China (Grant NO. 11JCZDJC17900)the Knowledge Innovation and Training Program of Tianjin, Tianjin Municipal Education Commission, China (Grant NO. 2013-1-2015 -12)
文摘Homeobox transcription factors participate in the growth and development of plants by regulating cell differentiation, morphogenesis and environmental signal response. To reveal the functions of these transcription factors in rice, we constructed the RNAi vectors of OsHox9, a member of homeobox family, and analyzed the function of OsHox9 using reverse genetics. The plant height and tillering number of RNAi transgenic plants decreased compared with those of wild-type plants. Reverse transcdption-polymerase chain reaction analysis showed that OsHox9 expression reduced in the transgenic plants with phenotypic variance, whereas that in the transgenic plants without phenotypic variance was similar to that in the wild-type plants. This result suggests that the phenotypes of the transgenic plants were caused by RNAi effects. The tissue-specificity of OsHox9 expression indicated that it was expressed in different organs, with high expression in stem apical medstem and young panicles. Subcellular location of OsHox9 demonstrated that it was localized on the cell membrane.
基金Cell Analysis Laboratory, 2nd Department of Internal Medicine, and the 1st Department of Pathology and Experimental Oncology, Semmelweis University for their technical support
文摘AIM:To characterize the regeneration-associated stem cell-related phenotype of hepatocyte-derived growth factor receptor(HGFR)-expressing cells in active ulcerative colitis(UC).METHODS:On the whole 38 peripheral blood samples and 38 colonic biopsy samples from 18 patients with histologically proven active UC and 20 healthy control subjects were collected.After preparing tissue microarrays and blood smears HGFR,caudal type homeobox 2(CDX2),prominin-1(CD133) and Musashi-1conventional and double fluorescent immunolabelings were performed.Immunostained samples were digitalized using high-resolution Mirax Desk instrument,and analyzed with the Mirax TMA Module software.For semiquantitative counting of immunopositive lamina propria(LP) cells 5 fields of view were counted at magnification x 200 in each sample core,then mean ± SD were determined.In case of peripheral blood smears,30 fields of view with 100 μm diameter were evaluated in every sample and the number of immunopositive cells(mean ± SD) was determined.Using 337 nm UVA Laser MicroDissection system at least 5000 subepithelial cells from the lamina propria were collected.Gene expression analysis of HGFR,CDX2,CD133,leucine-rich repeat-containing G-protein coupled receptor 5(Lgr5),Musashi-1 and cytokeratin20(CK20) were performed in both laser-microdisscted samples and blood samples by using real time reverse transcription polymerase chain reaction(RT-PCR).RESULTS:By performing conventional and double fluorescent immunolabelings confirmed by RT-PCR,higher number of HGFR(blood:6.7 ± 1.22 vs 38.5 ±3.18;LP:2.25 ± 0.85 vs 9.22 ± 0.65;P < 0.05),CDX2(blood:0 vs 0.94 ± 0.64;LP:0.75 ± 0.55 vs 2.11± 0.75;P < 0.05),CD133(blood:1.1 ± 0.72 vs 8.3± 1.08;LP:11.1 ± 0.85 vs 26.28 ± 1.71;P < 0.05)and Musashi-1(blood and LP:0 vs scattered) positive cells were detected in blood and lamina propria of UC samples as compared to controls.HGFR/CDX2(blood:0 vs 1± 0.59;LP:0.8 ± 0.69 vs 2.06 ± 0.72,P < 0.05)and Musashi-1/CDX2(blood and LP:0 vs scattered) coexpressions were found in blood and lamina propria of UC samples.HGFR/CD133 and CD133/CDX2 coexpressions appeared only in UC lamina propria samples.CDX2,Lgr5 and Musashi-1 expressions in UC blood samples were not accompanied by CK20 mRNA expression.CONCLUSION:In active UC,a portion of circulating HGFR-expressing cells are committed to the epithelial lineage,and may participate in mucosal regeneration by undergoing mesenchymal-to-epithelial transition.
基金National Natural Science Foundation of China,Grant/Award Number:81330017,81490744National Key R&D Program of China,Grant/Award Number:2017YFC1001402
文摘The proper development of uterus to a state of receptivity and the attainment of implantation competency for blastocyst are 2 indispensable aspects for implantation,which is considered to be a critical event for successful pregnancy. Like many developmental processes, a large number of transcription factors, such as homeobox genes, have been shown to orchestrate this complicated but highly organized physiological process during implantation. In this review, we focus on progress in studies of the role of homeobox genes, especially the Hox and Msx gene families, during implantation, together with subsequent development of post-implantation uterus and related reproductive defects in both mouse models and humans, that have led to better understanding of how implantation is precisely regulated and provide new insights into infertility.
基金The National Science Fund for Distinguished Young Scholars, No. 30125017The Major State Basic Research Development Program of China (973 Program), No. 2002CB513100
文摘AIM: To investigate the effect of pituitary homeobox 1 (PITX1) expression in cases of human gastric cancer on cancer differentiation and progression, and carcinogenesis. METHODS: Using polyclonal PITX1 antibodies, we studied the expression of PITX1 in normal gastric mucosa, atypical hyperplasia, intestinal metaplasia, and cancer tissue samples from 83 gastric cancer patients by immunohistochemistry. Moreover, semi-reverse transcription polymerase chain reaction (semi-RT-PCR) was performed to detect the mRNA level of PITX1 in three gastric cancer cell lines and a normal gastric epithelial cell line. Subsequently, somatic mutations of the PITX1 gene in 71 gastric cancer patients were analyzed by a combination of denaturing high performance liquid chromatography (DHPLC) and DNA sequencing. RESULTS: Immunohistochemistry showed that PITXl was strongly or moderately expressed in the parietal cells of normal gastric mucosa (100%), while 55 (66.3%) out of 83 samples of gastric cancers showed decreased PITXl expression. Moreover, PITXl expression was reduced in 20 out of 28 cases (71.5%) of intestinal metaplasia, but in only 1 out of 9 cases (11%) of atypical hyperplasia. More importantly, PITXl expression was significantly associated with the differentiation, position and invasion depth of gastric cancers (r = -0.316, P 〈 0.01; r = 0.213, P 〈 0.05; r = -0.259, P 〈 0.05, respectively). Similarly, levels of PITXl mRNA were significantly decreased in 2 gastric cancer cell lines, BGC-823 and SGC-7901, compared with the normal gastric epithelial cell line GES-1 (0.306 ± 0.060 vs 0.722 ± 0.102, P 〈 0.05; 0.356 ± 0.081 vs 0.722 ± 0.102, P 〈 0.05, respectively). Nevertheless, no somatic mutation of PITX1 gene was found in 71 samples of gastric cancer by DHPLC analysis followed by sequencing. CONCLUSION: Down-regulation of PITX1 may be a frequent molecular event in gastric carcinogenesis. Aberrant levels of PITXl expression may be closely correlated with the progression and differentiation of gastric cancer,
文摘BACKGROUND The distal-less homeobox(DLX)gene family plays an important role in the development of several tumors.However,the expression pattern,prognostic and diagnostic value,possible regulatory mechanisms,and the relationship between DLX family genes and immune infiltration in colon cancer have not been systematically reported.AIM We aimed to comprehensively analyze the biological role of the DLX gene family in the pathogenesis of colon cancer.METHODS Colon cancer tissue and normal colon tissue samples were collected from the Cancer Genome Atlas and Gene Expression Omnibus databases.Wilcoxon rank sum test and t-test were used to assess DLX gene family expression between colon cancer tissue and unpaired normal colon tissue.cBioPortal was used to analyze DLX gene family variants.R software was used to analyze DLX gene expression in colon cancer and the relationship between DLX gene family expression and clinical features and correlation heat map.The survival package and Cox regression module were used to assess the prognostic value of the DLX gene family.The pROC package was used to analyze the diagnostic value of the DLX gene family.R software was used to analyze the possible regulatory mechanisms of DLX gene family members and related genes.The GSVA package was used to analyze the relationship between the DLX gene family and immune infiltration.The ggplot2,the survminer package,and the clusterProfiler package were used for visualization.RESULTS DLX1/2/3/4/5 were significantly aberrantly expressed in colon cancer patients.The expression of DLX genes were associated with M stage,pathologic stage,primary therapy outcome,residual tumor,lymphatic invasion,T stage,N stage,age,perineural invasion,and history of colon polyps.DLX5 was independently correlated with the prognosis of colon cancer in multivariate analysis.DLX1/2/3/4/5/6 were involved in the development and progression of colon cancer by participating in immune infiltration and associated pathways,including the Hippo signaling pathway,the Wnt signaling pathway,several signaling pathways regulating the pluripotency of stem cells,and Staphylococcus aureus infection.CONCLUSION The results of this study suggest a possible role for the DLX gene family as potential diagnostic or prognostic biomarkers and therapeutic targets in colon cancer.