Capture is a key component for on?orbit service and space debris clean. The current research of capture on?orbit focuses on using special capture devices or full?actuated space arms to capture cooperative targets. How...Capture is a key component for on?orbit service and space debris clean. The current research of capture on?orbit focuses on using special capture devices or full?actuated space arms to capture cooperative targets. However, the structures of current capture devices are complex, and both space debris and abandoned spacecraft are non?cooperative targets. To capture non?cooperative targets in space, a lightweight, less driven under?actuated robotic hand is proposed in this paper, which composed by tendon?pulley transmission and double?stage mechanisms, and always driven by only one motor in process of closing finger. Because of the expandability, general grasping model is constructed. The equivalent joint driving forces and general grasping force are analyzed based on the model and the principle of virtual work. Which reveal the relationship among tendon driving force, joint driving forces and grasping force. In order to configure the number of knuckles of finger, a new analysis method which takes the maximum grasping space into account, is proposed. Supposing the maximum grasped object is an envelope circle with diameter of 2.5m. In the condition, a finger grasping maximum envelope circle with different knuckles is modeled. And the finger lengths with corresponding knuckles are calculated out. The finger length which consists of three knuckles is the shortest among under?actuated fingers consists of not more than five knuckles. Finally, the principle prototype and prototype robotic hand which consists of two dingers are designed and assembled. Experiments indicate that the under?actuated robotic hand can satisfy the grasp requirements.展开更多
Configuration design is an essential, creative and decision-making step m parallel manipulator design process, in which modeling and assembly are iterative and trivial. Combined approach with automatic parametric mode...Configuration design is an essential, creative and decision-making step m parallel manipulator design process, in which modeling and assembly are iterative and trivial. Combined approach with automatic parametric modeling and automatic assembly is proposed for parallel manipulator configuration design. The design process and key techniques, such as configuration design, configuration verification, poses calculation of all parts in parallel manipulator, virtual assembly and etc., are discussed and demonstrated by an example. A software package is developed for parallel manipulator configuration design based on the proposed method with Visual C++ and UG/OPEN on Unigraphics.展开更多
The paper studies on case-based reasoning of uncertain product attributes in configuration design of a product family. Interval numbers characterize uncertain product attributes. By interpolating a number of certain v...The paper studies on case-based reasoning of uncertain product attributes in configuration design of a product family. Interval numbers characterize uncertain product attributes. By interpolating a number of certain values randomly to replace interval numbers and making projection pursuit analysis on source cases and target cases of expanded numbers, we can get a projection value in the optimal projection direction. Based on projection value, we can construct a case retrieval model of projection pursuit that can handle coexisting certain and uncertain product attributes. The application examples of chainsaw configuration design show that case retrieval is highly sensitive to reliable results.展开更多
Satellite constellation configuration design is a complicated and time-consuming simulation optimization problem. In this paper, a new method called the rapid method for satellite constellation performance calculation...Satellite constellation configuration design is a complicated and time-consuming simulation optimization problem. In this paper, a new method called the rapid method for satellite constellation performance calculation is developed by the Hermite interpolation technique to reduce the computing complication and time. The constellation configuration optimization model is established on the basis of the rapid performance calculation. To reduce the search space and enhance the optimization efficiency, this paper presents a new constellation optimization strategy based on the ordinal optimization (00) theory and expands the algorithm realization for constellation optimization including precise and crude models, ordered performance curves, selection rules and selected subsets. Two experiments about navigation constellation and space based surveillance system (SBSS) are carried out and the analysis of simulation results indicates that the ordinal optimization for satellite constellation configuration design is effective.展开更多
The contradiction between manufacturing costs and customer demand of mechatronic products can be balanced by configuration design. The article proposes a customer-oriented configuration model for modular mechatronic p...The contradiction between manufacturing costs and customer demand of mechatronic products can be balanced by configuration design. The article proposes a customer-oriented configuration model for modular mechatronic products which makes up the shortfall in meeting customer needs for the traditional configuration de- sign mode. The elements of the modular mechatronic products configuration model including module, module connection and configuration knowledge are analyzed. And a formal representation method for configuration model elements combining with their characteristics is given. Based on the above research, an abstract configuration model of modular mechatronic products is designed. Finally, an industrial robot is used as an application exam- ple to build a customer-oriented industrial robot configuration model.展开更多
To improve the power efficiency and optimize the configuration of cold crucible using for continuous melting and directional solidification (DS), based on experimental verification, 3D finite element (FE) models w...To improve the power efficiency and optimize the configuration of cold crucible using for continuous melting and directional solidification (DS), based on experimental verification, 3D finite element (FE) models with various configuration-elements were developed to investigate the magnetic field in cold crucible. Magnetic flux density (B) was measured and calculated under different configuration parameters. These parameters include the inner diameter (D2), the slit width (d), the thickness of crucible wall, the section shape of the slit and the shield ring. The results show that the magnetic flux density in z direction (Bz) both at the slit and at the midpoint of segment will increase with the decrease of D2 or with the increase of the width of the slit and the section area of wedge slit or removing the shield ring. In addition, there is a worst wall thickness that can induce the minimum Bz for a cold crucible with a certain outer diameter.展开更多
An optimal design methodology for the configuration of two rail slider was proposed to get better dynamic performance. The taper length, taper height and the rail width of the reading/writing head are considered as ...An optimal design methodology for the configuration of two rail slider was proposed to get better dynamic performance. The taper length, taper height and the rail width of the reading/writing head are considered as design variables. The complex geometry method is utilized as the search scheme in the optimization process. Optimization results show that the new slider has better dynamic characteristics and is more stable than the original designed slider. The optimization process also demonstrates that the optimum model and optimum method is effective.展开更多
In implementing mass customization, how to respond rapidly to customers’ requirements is a key problem. Configuration design is considered effective in early stage of product design. This paper studies a configuratio...In implementing mass customization, how to respond rapidly to customers’ requirements is a key problem. Configuration design is considered effective in early stage of product design. This paper studies a configuration method based on constraints and fuzzy decision for product family. The configuration method is evolved from constraint based product configuration. It employs fuzzy optimum selection in the reasoning process, which can select similar components when customers’ requirements can not be met precisely. In the configurator, product family is represented with GBOM(Generic Bill Of Material) and ACL(Article Characteristic List). Every node of GBOM has an ACL to list all instances of a component family. Constraints are attached to every node, which involves variable definition and constraints definition. In the reasoning process, constraint satisfaction and fuzzy optimum selection interact to search optimum solution. A prototype is developted to demonstrate how to run the configurator. The paper ends with a discussion of advantages, future work of the configuration method.展开更多
On the basis of researching on requirement product configuration in mass customization, the concept of product family requirement class (PFRC) and requirement-matching template are put forward. A case-based requirem...On the basis of researching on requirement product configuration in mass customization, the concept of product family requirement class (PFRC) and requirement-matching template are put forward. A case-based requirement product configuration (CB-RPC) model and corresponding requirement product model are established. The result of requirement product configuration is obtained by using the method of two-level similar matching. In addition, the effect of the method on requirement responding is analyzed. Finally, the model and the method given are applied in elevator industry, and have improved the enterorise's ability of rapid responding to customer's reouirements.展开更多
Today's manufacturing cnvironmem forces manufacturing companies to make as many product variations as possible at affordable costs within a short time. Mass customisation is one of most important technologies for com...Today's manufacturing cnvironmem forces manufacturing companies to make as many product variations as possible at affordable costs within a short time. Mass customisation is one of most important technologies for companies to achieve their objectives. Efforts to mass customisation should be made on two aspects: (1) To modularize products and make them as less differences as possible; (2) To design manufacturing resources and make them provide as many processes variations as possible. This paper reports our recent work on aspect (2), i.e. how to design a reconfignrable manufacturing system (RMS) so that it can be competent to accomplish various processes optimally; Reconfignrable robot system (RRS) is taken as an example. RMS design involves architecture design and configuration design, and configuration design is further divided in design analysis and design synthesis. Axiomatic design theory (ADT) is applied to architecture design, the features and issues of RRS configuration design are discussed, automatic modelling method is developed for design analysis, and concurrent design methodology is presented for design synthesis.展开更多
The current research of configurable product design mainly focuses on how to convert a predefined set of components into a valid set of product structures. With the scale and complexity of configurable products increa...The current research of configurable product design mainly focuses on how to convert a predefined set of components into a valid set of product structures. With the scale and complexity of configurable products increasing, the interdependencies between customer demands and product structures grow up as well. The result is that existing product structures fails to satisfy the individual customer requirements and hence product variants are needed. This paper is aimed to build a bridge between customer demands and product structures in order to make demand-driven fast response design feasible. First of all, multi-hierarchical models of configurable product design are established with customer demand model, technical requirement model and product structure model. Then, the transition of multi-hierarchical models among customer demand model, technical requirement model and product structure model is solved with fuzzy analytic hierarchy process (FAHP) and the algorithm of multi-level matching. Finally, optimal structure according to the customer demands is obtained with the calculation of Euclidean distance and similarity of some cases. In practice, the configuration design of a clamping unit of injection molding machine successfully performs an optimal search strategy for the product variants with reasonable satisfaction to individual customer demands. The proposed method can automatically generate a configuration design with better alternatives for each product structures, and shorten the time of finding the configuration of a product.展开更多
A novel configuration performance prediction approach with combination of principal component analysis(PCA) and support vector machine(SVM) was proposed.This method can estimate the performance parameter values of a n...A novel configuration performance prediction approach with combination of principal component analysis(PCA) and support vector machine(SVM) was proposed.This method can estimate the performance parameter values of a newly configured product through soft computing technique instead of practical test experiments,which helps to evaluate whether or not the product variant can satisfy the customers' individual requirements.The PCA technique was used to reduce and orthogonalize the module parameters that affect the product performance.Then,these extracted features were used as new input variables in SVM model to mine knowledge from the limited existing product data.The performance values of a newly configured product can be predicted by means of the trained SVM models.This PCA-SVM method can ensure that the performance prediction is executed rapidly and accurately,even under the small sample conditions.The applicability of the proposed method was verified on a family of plate electrostatic precipitators.展开更多
Public transportation network reorganisation can be a key measure in designing more efficient networks and increasing the number of passengers. To date, several authors have proposed models for the “transit route net...Public transportation network reorganisation can be a key measure in designing more efficient networks and increasing the number of passengers. To date, several authors have proposed models for the “transit route network design problem” (TRNDP), and many of them use a transit assignment model as one component. However, not all models have considered the “common lines problem,” which is an essential feature in transit network assignment and is based on the concept that the fastest way to get to a destination is to take the first vehicle arriving among an “attractive” set of lines. Thus, we sought to reveal the features of considering the common lines problem by comparing results with and without considering the problem in a transit assignment model. For comparison, a model similar to a previous one was used, formulated as a bi-level optimisation problem, the upper problem of which is described as a multi-objective problem. As a result, although the solutions with and without considering the common lines showed almost the same Pareto front, we confirmed that a more direct service is provided if the common lines problem is considered whereas a less direct service is provided if it is not. With a small network case study, we found that considering the common lines problem in the TRNDP is important as it allows operators to provide more direct services.展开更多
Security risks of flammability and explosion represent major problems with the use of conventional lithium rechargeable batteries using a liquid electrolyte.The application of solid-state electrolytes could effectivel...Security risks of flammability and explosion represent major problems with the use of conventional lithium rechargeable batteries using a liquid electrolyte.The application of solid-state electrolytes could effectively help to avoid these safety concerns.However,integrating the solid-state electrolytes into the all-solid-state lithium batteries is still a huge challenge mainly due to the high interfacial resistance present in the entire battery,especially at the interface between the cathode and the solid-state electrolyte pellet and the interfaces inside the cathode.Herein,recent progress made from investigations of cathode/solid-state electrolyte interfacial behaviors including the contact problem,the interlayer diffusion issue,the space-charge layer effect,and electrochemical compatibility is presented according to the classification of oxide-,sulfide-,and polymer-based solid-state electrolytes.We also propose strategies for the construction of ideal next-generation cathode/solid-state electrolyte interfaces with high room-temperature ionic conductivity,stable interfacial contact during long cycling,free formation of the space-charge region,and good compatibility with high-voltage cathodes.展开更多
Sodium ion batteries(SIBs)have been regarded as one of the alternatives to lithium ion batteries owing to their wide availability and significantly low cost of sodium sources.However,they face serious challenges of lo...Sodium ion batteries(SIBs)have been regarded as one of the alternatives to lithium ion batteries owing to their wide availability and significantly low cost of sodium sources.However,they face serious challenges of low energy&power density and short cycling lifespan owing to the heavy mass and large radius of Na^(+).Vanadium-based polyanionic compounds have advantageous characteristic of high operating voltage,high ionic conductivity and robust structural framework,which is conducive to their high energy&power density and long lifespan for SIBs.In this review,we will overview the latest V-based polyanionic compounds,along with the respective characteristic from the intrinsic crystal structure to performance presentation and improvement for SIBs.One of the most important aspect is to discover the essential problems existed in the present V-based polyanionic compounds for high-energy&power applications,and point out most suitable solutions from the crystal structure modulation,interface tailoring and electrode configuration design.Moreover,some scientific issues of V-based polyanionic compounds shall be also proposed and related future direction shall be provided.We believe that this review can serve as a motivation for further development of novel V-based polyanionic compounds and drive them toward high energy&power applications in the near future.展开更多
To improve the operation situation of difficulty and low efficiency in the extraction of fermented grains(FG),a high-load and large-workspace reclaiming robot for ceramic cylinder fermentation is designed,and a reclai...To improve the operation situation of difficulty and low efficiency in the extraction of fermented grains(FG),a high-load and large-workspace reclaiming robot for ceramic cylinder fermentation is designed,and a reclaiming effector is designed according to the operating characteristics.Firstly,the kinematics and singularity of the mechanism are analyzed.A multi-domain polar coordinate search method is proposed to obtain the workspace and the volume of the mechanism.Secondly,the dynamic modeling is completed and the example simulation is carried out.Thirdly,the motion-force transmission index of the mechanism is established.And based on the global transmissibility and the good-transmission workspace,the dimensional synthesis of the driving mechanism is completed by using the performance atlas-based method.Finally,aiming at the regular workspace size,stiffness and loading capacity,the Pareto optimal solution set of the executive mechanism dimension is obtained by using the multi-objective particle swarm optimization(MOPSO)algorithm.This paper can provide a theoretical basis for the optimal design and control of FG reclaiming robot.展开更多
With the expanding use of the Internet of Things(IoT)devices and the connection of humans and devices to the Internet,the need to provide security in this field is constantly growing.The conventional cryptographic sol...With the expanding use of the Internet of Things(IoT)devices and the connection of humans and devices to the Internet,the need to provide security in this field is constantly growing.The conventional cryptographic solutions need the IoT device to store secret keys in its non-volatile memory(NVM)leading the system to be vulnerable to physical attacks.In addition,they are not appropriate for IoT applications due to their complex calculations.Thus,physically unclonable functions(PUFs)have been introduced to simultaneously address these issues.PUFs are lightweight and easy-toaccess hardware security primitives which employ the unique characteristics of integrated circuits(ICs)to generate secret keys.Among all proposed PUFs,ring oscillator PUF(RO-PUF)has had amore suitable structure for hardware implementation because of its high reliability and easier providing of circuital symmetry.However,RO-PUF has not been so attractive for authentication purposes due to its limited supported challenge-response pairs(CRPs).A few efforts have been made in recent years that could successfully improve the RO-PUF CRP space,such as configurable RO-PUF(CRO-PUF).In this paper,by considerably improving the CRO-PUF structure and adding spare paths,we propose a novel strong RO-PUF structure that exponentially grows the CRP space and dramatically reduces the hardware cost.We implement our design on a simple and low-cost FPGA chip named XC6SLX9-2tqg144,stating that the proposed design can be used in IoT applications.In addition,to improve the CRP space,our design creates a suitable improvement in different security/performance terms of the generated responses,and dramatically outperforms the state-of-the-art.The average reliability,uniqueness,and uniformity of the responses generated are 99.55%,48.49%,and 50.99%,respectively.展开更多
In this work, a novel airframe/propulsion integration design method of the wing-body configuration for hypersonic cruise aircraft is proposed, where the configuration is integrated with inward-turning inlets. With the...In this work, a novel airframe/propulsion integration design method of the wing-body configuration for hypersonic cruise aircraft is proposed, where the configuration is integrated with inward-turning inlets. With the help of this method, the major design concern of balancing the aerodynamic performance against the requirements for efficient propulsion can be well addressed. A novel geometric parametrically modelling method based on a combination of patched class and shape transition(CST) and COONs surface is proposed to represent the configuration, especially a complex configuration with an irregular inlet lip shape. The modelling method enlarges the design space of components on the premise of guaranteeing the configuration integrity via special constraints imposed on the interface across adjacent surfaces. A basic flow inside a cone shaped by a dual-inflection-point generatrix is optimized to generate the inward-turning inlet with improvements of both compression efficiency and flow uniformity. The performance improvement mechanism of this basic flow is the compression velocity variation induced by the variation of the generatrix slope along the flow path. At the design point, numerical simulation results show that the lift-to-drag ratio of the configuration is as high as 5.2 and the inlet works well with a high level of compression efficiency and flow uniformity. The design result also has a good performance on off-design conditions. The achievement of all the design targets turns out that the integration design method proposed in this paper is efficient and practical.展开更多
Recent years, underground mining method is becoming popular because of its potentially high productivity and efficiency. In this method, a mining machinery; load haul dump(LHD), is used as both an excavator and a tran...Recent years, underground mining method is becoming popular because of its potentially high productivity and efficiency. In this method, a mining machinery; load haul dump(LHD), is used as both an excavator and a transporter of ore. This paper proposes a distributed system that realizes the excavation and transport functions with separated vehicles, an excavator and a transporter. In addition, this research proposes a mining map and configurations suitable for the proposed distributed system. To evaluate the productivity of the proposed system, a simulation environment has been developed. Analysis using the simulator reveals what performance factors of the excavator and the transporter have large impacts on the productivity. Simulation results also demonstrate the difference of potential between LHD system and the distributed system that can be explained based on their functions allocation.展开更多
This article presents a parameterized configuration modeling approach to develop a 6 degrees of freedom (DOF) rigid-body model for air-breathing hypersonic vehicle (AHV). The modeling process involves the paramete...This article presents a parameterized configuration modeling approach to develop a 6 degrees of freedom (DOF) rigid-body model for air-breathing hypersonic vehicle (AHV). The modeling process involves the parameterized configuration design, inviscous hypersonic aerodynamic force calculation and scramjet engine modeling. The parameters are designed for airframe-propulsion integration configuration, the aerodynamic force calculation is based on engineering experimental methods, and the engine model is acquired from gas dynamics and quasi-one dimensional combustor calculations. Multivariate fitting is used to obtain analytical equations for aerodynamic force and thrust. Furthermore, the fitting accuracy is evaluated by relative error (RE). Trim results show that the model can be applied to the investigation of control method for AHV during the cruise phase. The modeling process integrates several disciplines such as configuration design, aerodynamic calculation, scramjet modeling and control method. Therefore the modeling method makes it possible to conduct AHV aerodynamics/propulsion/control integration design.展开更多
基金Supported by Joint Funds of National Natural Science Foundation of China(Grant No.U1613201)Shenzhen Research Funds(JCYJ20170413104438332)
文摘Capture is a key component for on?orbit service and space debris clean. The current research of capture on?orbit focuses on using special capture devices or full?actuated space arms to capture cooperative targets. However, the structures of current capture devices are complex, and both space debris and abandoned spacecraft are non?cooperative targets. To capture non?cooperative targets in space, a lightweight, less driven under?actuated robotic hand is proposed in this paper, which composed by tendon?pulley transmission and double?stage mechanisms, and always driven by only one motor in process of closing finger. Because of the expandability, general grasping model is constructed. The equivalent joint driving forces and general grasping force are analyzed based on the model and the principle of virtual work. Which reveal the relationship among tendon driving force, joint driving forces and grasping force. In order to configure the number of knuckles of finger, a new analysis method which takes the maximum grasping space into account, is proposed. Supposing the maximum grasped object is an envelope circle with diameter of 2.5m. In the condition, a finger grasping maximum envelope circle with different knuckles is modeled. And the finger lengths with corresponding knuckles are calculated out. The finger length which consists of three knuckles is the shortest among under?actuated fingers consists of not more than five knuckles. Finally, the principle prototype and prototype robotic hand which consists of two dingers are designed and assembled. Experiments indicate that the under?actuated robotic hand can satisfy the grasp requirements.
文摘Configuration design is an essential, creative and decision-making step m parallel manipulator design process, in which modeling and assembly are iterative and trivial. Combined approach with automatic parametric modeling and automatic assembly is proposed for parallel manipulator configuration design. The design process and key techniques, such as configuration design, configuration verification, poses calculation of all parts in parallel manipulator, virtual assembly and etc., are discussed and demonstrated by an example. A software package is developed for parallel manipulator configuration design based on the proposed method with Visual C++ and UG/OPEN on Unigraphics.
文摘The paper studies on case-based reasoning of uncertain product attributes in configuration design of a product family. Interval numbers characterize uncertain product attributes. By interpolating a number of certain values randomly to replace interval numbers and making projection pursuit analysis on source cases and target cases of expanded numbers, we can get a projection value in the optimal projection direction. Based on projection value, we can construct a case retrieval model of projection pursuit that can handle coexisting certain and uncertain product attributes. The application examples of chainsaw configuration design show that case retrieval is highly sensitive to reliable results.
文摘Satellite constellation configuration design is a complicated and time-consuming simulation optimization problem. In this paper, a new method called the rapid method for satellite constellation performance calculation is developed by the Hermite interpolation technique to reduce the computing complication and time. The constellation configuration optimization model is established on the basis of the rapid performance calculation. To reduce the search space and enhance the optimization efficiency, this paper presents a new constellation optimization strategy based on the ordinal optimization (00) theory and expands the algorithm realization for constellation optimization including precise and crude models, ordered performance curves, selection rules and selected subsets. Two experiments about navigation constellation and space based surveillance system (SBSS) are carried out and the analysis of simulation results indicates that the ordinal optimization for satellite constellation configuration design is effective.
基金supported by Graduate Starting Seed Fund of Northwestern Polytechnical University
文摘The contradiction between manufacturing costs and customer demand of mechatronic products can be balanced by configuration design. The article proposes a customer-oriented configuration model for modular mechatronic products which makes up the shortfall in meeting customer needs for the traditional configuration de- sign mode. The elements of the modular mechatronic products configuration model including module, module connection and configuration knowledge are analyzed. And a formal representation method for configuration model elements combining with their characteristics is given. Based on the above research, an abstract configuration model of modular mechatronic products is designed. Finally, an industrial robot is used as an application exam- ple to build a customer-oriented industrial robot configuration model.
基金Project (2011CB605504) supported by the National Basic Research Program of China
文摘To improve the power efficiency and optimize the configuration of cold crucible using for continuous melting and directional solidification (DS), based on experimental verification, 3D finite element (FE) models with various configuration-elements were developed to investigate the magnetic field in cold crucible. Magnetic flux density (B) was measured and calculated under different configuration parameters. These parameters include the inner diameter (D2), the slit width (d), the thickness of crucible wall, the section shape of the slit and the shield ring. The results show that the magnetic flux density in z direction (Bz) both at the slit and at the midpoint of segment will increase with the decrease of D2 or with the increase of the width of the slit and the section area of wedge slit or removing the shield ring. In addition, there is a worst wall thickness that can induce the minimum Bz for a cold crucible with a certain outer diameter.
文摘An optimal design methodology for the configuration of two rail slider was proposed to get better dynamic performance. The taper length, taper height and the rail width of the reading/writing head are considered as design variables. The complex geometry method is utilized as the search scheme in the optimization process. Optimization results show that the new slider has better dynamic characteristics and is more stable than the original designed slider. The optimization process also demonstrates that the optimum model and optimum method is effective.
文摘In implementing mass customization, how to respond rapidly to customers’ requirements is a key problem. Configuration design is considered effective in early stage of product design. This paper studies a configuration method based on constraints and fuzzy decision for product family. The configuration method is evolved from constraint based product configuration. It employs fuzzy optimum selection in the reasoning process, which can select similar components when customers’ requirements can not be met precisely. In the configurator, product family is represented with GBOM(Generic Bill Of Material) and ACL(Article Characteristic List). Every node of GBOM has an ACL to list all instances of a component family. Constraints are attached to every node, which involves variable definition and constraints definition. In the reasoning process, constraint satisfaction and fuzzy optimum selection interact to search optimum solution. A prototype is developted to demonstrate how to run the configurator. The paper ends with a discussion of advantages, future work of the configuration method.
基金This project is supported by National Basic Research Program of China (973 Program, No.2004CB719402)National Natural Science Foundation of China(No.50475072, No.50275133)National Hi-tech Research and Development Program of China(863 Program, No.2003-AA411320).
文摘On the basis of researching on requirement product configuration in mass customization, the concept of product family requirement class (PFRC) and requirement-matching template are put forward. A case-based requirement product configuration (CB-RPC) model and corresponding requirement product model are established. The result of requirement product configuration is obtained by using the method of two-level similar matching. In addition, the effect of the method on requirement responding is analyzed. Finally, the model and the method given are applied in elevator industry, and have improved the enterorise's ability of rapid responding to customer's reouirements.
文摘Today's manufacturing cnvironmem forces manufacturing companies to make as many product variations as possible at affordable costs within a short time. Mass customisation is one of most important technologies for companies to achieve their objectives. Efforts to mass customisation should be made on two aspects: (1) To modularize products and make them as less differences as possible; (2) To design manufacturing resources and make them provide as many processes variations as possible. This paper reports our recent work on aspect (2), i.e. how to design a reconfignrable manufacturing system (RMS) so that it can be competent to accomplish various processes optimally; Reconfignrable robot system (RRS) is taken as an example. RMS design involves architecture design and configuration design, and configuration design is further divided in design analysis and design synthesis. Axiomatic design theory (ADT) is applied to architecture design, the features and issues of RRS configuration design are discussed, automatic modelling method is developed for design analysis, and concurrent design methodology is presented for design synthesis.
基金supported by National Natural Science Foundation of China(Grant Nos. 51205350, 51275459)National Science and Technology Major Project of China(Grant No. 2012ZX04010-011)Postdoctoral Research Foundation of Zhejiang Province(Grant No.Bsh1201019)
文摘The current research of configurable product design mainly focuses on how to convert a predefined set of components into a valid set of product structures. With the scale and complexity of configurable products increasing, the interdependencies between customer demands and product structures grow up as well. The result is that existing product structures fails to satisfy the individual customer requirements and hence product variants are needed. This paper is aimed to build a bridge between customer demands and product structures in order to make demand-driven fast response design feasible. First of all, multi-hierarchical models of configurable product design are established with customer demand model, technical requirement model and product structure model. Then, the transition of multi-hierarchical models among customer demand model, technical requirement model and product structure model is solved with fuzzy analytic hierarchy process (FAHP) and the algorithm of multi-level matching. Finally, optimal structure according to the customer demands is obtained with the calculation of Euclidean distance and similarity of some cases. In practice, the configuration design of a clamping unit of injection molding machine successfully performs an optimal search strategy for the product variants with reasonable satisfaction to individual customer demands. The proposed method can automatically generate a configuration design with better alternatives for each product structures, and shorten the time of finding the configuration of a product.
基金Project(9140A18010210KG01) supported by the Departmental Pre-Research Fund of China
文摘A novel configuration performance prediction approach with combination of principal component analysis(PCA) and support vector machine(SVM) was proposed.This method can estimate the performance parameter values of a newly configured product through soft computing technique instead of practical test experiments,which helps to evaluate whether or not the product variant can satisfy the customers' individual requirements.The PCA technique was used to reduce and orthogonalize the module parameters that affect the product performance.Then,these extracted features were used as new input variables in SVM model to mine knowledge from the limited existing product data.The performance values of a newly configured product can be predicted by means of the trained SVM models.This PCA-SVM method can ensure that the performance prediction is executed rapidly and accurately,even under the small sample conditions.The applicability of the proposed method was verified on a family of plate electrostatic precipitators.
文摘Public transportation network reorganisation can be a key measure in designing more efficient networks and increasing the number of passengers. To date, several authors have proposed models for the “transit route network design problem” (TRNDP), and many of them use a transit assignment model as one component. However, not all models have considered the “common lines problem,” which is an essential feature in transit network assignment and is based on the concept that the fastest way to get to a destination is to take the first vehicle arriving among an “attractive” set of lines. Thus, we sought to reveal the features of considering the common lines problem by comparing results with and without considering the problem in a transit assignment model. For comparison, a model similar to a previous one was used, formulated as a bi-level optimisation problem, the upper problem of which is described as a multi-objective problem. As a result, although the solutions with and without considering the common lines showed almost the same Pareto front, we confirmed that a more direct service is provided if the common lines problem is considered whereas a less direct service is provided if it is not. With a small network case study, we found that considering the common lines problem in the TRNDP is important as it allows operators to provide more direct services.
基金National Natural Science Foundation of China(U2001220)the Local Innovative Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01N111)+1 种基金the Shenzhen Technical Plan Project(Nos.JCYJ20180508152210821,JCYJ20170817161221958,and JCYJ20180508152135822)the Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center(XMHT20200203006).
文摘Security risks of flammability and explosion represent major problems with the use of conventional lithium rechargeable batteries using a liquid electrolyte.The application of solid-state electrolytes could effectively help to avoid these safety concerns.However,integrating the solid-state electrolytes into the all-solid-state lithium batteries is still a huge challenge mainly due to the high interfacial resistance present in the entire battery,especially at the interface between the cathode and the solid-state electrolyte pellet and the interfaces inside the cathode.Herein,recent progress made from investigations of cathode/solid-state electrolyte interfacial behaviors including the contact problem,the interlayer diffusion issue,the space-charge layer effect,and electrochemical compatibility is presented according to the classification of oxide-,sulfide-,and polymer-based solid-state electrolytes.We also propose strategies for the construction of ideal next-generation cathode/solid-state electrolyte interfaces with high room-temperature ionic conductivity,stable interfacial contact during long cycling,free formation of the space-charge region,and good compatibility with high-voltage cathodes.
基金financial support from the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21070500)the DNL Cooperation Fund,CAS(DNL201914)。
文摘Sodium ion batteries(SIBs)have been regarded as one of the alternatives to lithium ion batteries owing to their wide availability and significantly low cost of sodium sources.However,they face serious challenges of low energy&power density and short cycling lifespan owing to the heavy mass and large radius of Na^(+).Vanadium-based polyanionic compounds have advantageous characteristic of high operating voltage,high ionic conductivity and robust structural framework,which is conducive to their high energy&power density and long lifespan for SIBs.In this review,we will overview the latest V-based polyanionic compounds,along with the respective characteristic from the intrinsic crystal structure to performance presentation and improvement for SIBs.One of the most important aspect is to discover the essential problems existed in the present V-based polyanionic compounds for high-energy&power applications,and point out most suitable solutions from the crystal structure modulation,interface tailoring and electrode configuration design.Moreover,some scientific issues of V-based polyanionic compounds shall be also proposed and related future direction shall be provided.We believe that this review can serve as a motivation for further development of novel V-based polyanionic compounds and drive them toward high energy&power applications in the near future.
基金supported by the National Natural Science Foundation of China(No.51905367)。
文摘To improve the operation situation of difficulty and low efficiency in the extraction of fermented grains(FG),a high-load and large-workspace reclaiming robot for ceramic cylinder fermentation is designed,and a reclaiming effector is designed according to the operating characteristics.Firstly,the kinematics and singularity of the mechanism are analyzed.A multi-domain polar coordinate search method is proposed to obtain the workspace and the volume of the mechanism.Secondly,the dynamic modeling is completed and the example simulation is carried out.Thirdly,the motion-force transmission index of the mechanism is established.And based on the global transmissibility and the good-transmission workspace,the dimensional synthesis of the driving mechanism is completed by using the performance atlas-based method.Finally,aiming at the regular workspace size,stiffness and loading capacity,the Pareto optimal solution set of the executive mechanism dimension is obtained by using the multi-objective particle swarm optimization(MOPSO)algorithm.This paper can provide a theoretical basis for the optimal design and control of FG reclaiming robot.
文摘With the expanding use of the Internet of Things(IoT)devices and the connection of humans and devices to the Internet,the need to provide security in this field is constantly growing.The conventional cryptographic solutions need the IoT device to store secret keys in its non-volatile memory(NVM)leading the system to be vulnerable to physical attacks.In addition,they are not appropriate for IoT applications due to their complex calculations.Thus,physically unclonable functions(PUFs)have been introduced to simultaneously address these issues.PUFs are lightweight and easy-toaccess hardware security primitives which employ the unique characteristics of integrated circuits(ICs)to generate secret keys.Among all proposed PUFs,ring oscillator PUF(RO-PUF)has had amore suitable structure for hardware implementation because of its high reliability and easier providing of circuital symmetry.However,RO-PUF has not been so attractive for authentication purposes due to its limited supported challenge-response pairs(CRPs).A few efforts have been made in recent years that could successfully improve the RO-PUF CRP space,such as configurable RO-PUF(CRO-PUF).In this paper,by considerably improving the CRO-PUF structure and adding spare paths,we propose a novel strong RO-PUF structure that exponentially grows the CRP space and dramatically reduces the hardware cost.We implement our design on a simple and low-cost FPGA chip named XC6SLX9-2tqg144,stating that the proposed design can be used in IoT applications.In addition,to improve the CRP space,our design creates a suitable improvement in different security/performance terms of the generated responses,and dramatically outperforms the state-of-the-art.The average reliability,uniqueness,and uniformity of the responses generated are 99.55%,48.49%,and 50.99%,respectively.
基金supported by the ‘‘111" Project of China (No. B17037)
文摘In this work, a novel airframe/propulsion integration design method of the wing-body configuration for hypersonic cruise aircraft is proposed, where the configuration is integrated with inward-turning inlets. With the help of this method, the major design concern of balancing the aerodynamic performance against the requirements for efficient propulsion can be well addressed. A novel geometric parametrically modelling method based on a combination of patched class and shape transition(CST) and COONs surface is proposed to represent the configuration, especially a complex configuration with an irregular inlet lip shape. The modelling method enlarges the design space of components on the premise of guaranteeing the configuration integrity via special constraints imposed on the interface across adjacent surfaces. A basic flow inside a cone shaped by a dual-inflection-point generatrix is optimized to generate the inward-turning inlet with improvements of both compression efficiency and flow uniformity. The performance improvement mechanism of this basic flow is the compression velocity variation induced by the variation of the generatrix slope along the flow path. At the design point, numerical simulation results show that the lift-to-drag ratio of the configuration is as high as 5.2 and the inlet works well with a high level of compression efficiency and flow uniformity. The design result also has a good performance on off-design conditions. The achievement of all the design targets turns out that the integration design method proposed in this paper is efficient and practical.
文摘Recent years, underground mining method is becoming popular because of its potentially high productivity and efficiency. In this method, a mining machinery; load haul dump(LHD), is used as both an excavator and a transporter of ore. This paper proposes a distributed system that realizes the excavation and transport functions with separated vehicles, an excavator and a transporter. In addition, this research proposes a mining map and configurations suitable for the proposed distributed system. To evaluate the productivity of the proposed system, a simulation environment has been developed. Analysis using the simulator reveals what performance factors of the excavator and the transporter have large impacts on the productivity. Simulation results also demonstrate the difference of potential between LHD system and the distributed system that can be explained based on their functions allocation.
基金Aeronautical Science Foundation of China (2008ZA51002)
文摘This article presents a parameterized configuration modeling approach to develop a 6 degrees of freedom (DOF) rigid-body model for air-breathing hypersonic vehicle (AHV). The modeling process involves the parameterized configuration design, inviscous hypersonic aerodynamic force calculation and scramjet engine modeling. The parameters are designed for airframe-propulsion integration configuration, the aerodynamic force calculation is based on engineering experimental methods, and the engine model is acquired from gas dynamics and quasi-one dimensional combustor calculations. Multivariate fitting is used to obtain analytical equations for aerodynamic force and thrust. Furthermore, the fitting accuracy is evaluated by relative error (RE). Trim results show that the model can be applied to the investigation of control method for AHV during the cruise phase. The modeling process integrates several disciplines such as configuration design, aerodynamic calculation, scramjet modeling and control method. Therefore the modeling method makes it possible to conduct AHV aerodynamics/propulsion/control integration design.