期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Numerical investigation on the flow structures in a narrow confined channel with staggered jet array arrangement 被引量:3
1
作者 Liu Haiyong Liu Cunliang Wu Wenming 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第6期1616-1628,共13页
A series of numerical analyses have been performed to investigate the flow structures in a narrow confined channel with 12 staggered circular impingement holes and one bigger exit hole. The flow enters the channel thr... A series of numerical analyses have been performed to investigate the flow structures in a narrow confined channel with 12 staggered circular impingement holes and one bigger exit hole. The flow enters the channel through the impingement holes and exits through the far end outlet. The flow fields corresponding to two jet Reynolds numbers (25000 and 65000) and three channel con- figurations with different ratios of the channel height to the impingement hole diameter (Zr 1, 3, 5) are analyzed by solving the Reynolds averaged Navier-Stokes equations with the realizable k-e turbulence model. Detailed flow field information including the secondary flow, the interaction between the jets and the cross flow, and flow distribution along the channel has been obtained. Comparisons between the numerical and experimental results of the flow fields at the four planes along the channel are performed to validate the numerical method. The calculated impingement pattern, high velocity flow distribution, low velocity separation region and vortices are in good agreement with the experimental data, implying the validity and effectiveness of the employed numerical approach for analyzing relevant flow field. 展开更多
关键词 confined channel Cross flow Flow structure Impingement coolingTurbulence model
原文传递
Heat transfer characteristics in a narrow confined channel with discrete impingement cooling 被引量:1
2
作者 Yang LI Tao LIU +2 位作者 Jianjun TAO Weihua YANG Likun DONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第4期220-229,共10页
Heat transfer characteristics in a narrow confined channel with discrete impingement cooling were investigated using thermal infrared camera. Detailed heat transfer distributions and comparisons on three surfaces with... Heat transfer characteristics in a narrow confined channel with discrete impingement cooling were investigated using thermal infrared camera. Detailed heat transfer distributions and comparisons on three surfaces with three impact diameters were experimentally studied in the range of Reynolds number of 3000 to 30000. The experimental results indicated that the strong impingement jet leaded to a high strength heat transfer zone in the ΔX=±2.5D;range of the impact center,which was 1.3–2.5 times of the average heat transfer value of the impingement wall. With the same coolant mass flow rate, small diameter case had lower heat transfer coefficient on both inner wall and outside wall, while the impingement wall was insensitive to the impact diameter. The surface averaged Nusselt number of inner wall was only 43%–57% of impingement wall, while the outside wall can reach up to 80%–90%. The larger the diameter, the higher heat transfer enhancement and the smaller the channel flow resistance was observed in term of Reynolds number. The surface averaged Nusselt numbers were developed as the function of Reynolds number and the impingement height-to-diameter for further engineering applications. 展开更多
关键词 AERO-ENGINE Heat transfer characteristics Impingement cooling Narrow confined channel Turbine blade
原文传递
Experimental Study on the Mobility of Channelized Granular Mass Flow 被引量:1
3
作者 ZHOU Gongdan Nigel G.WRIGHT +1 位作者 SUN Qicheng CAI Qipeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第3期988-998,共11页
Granular mass flows (e.g., debris flows/avalanches) in landslide-prone areas are of great concern because they often cause catastrophic disasters as a result of their long run-out distances and large impact forces. ... Granular mass flows (e.g., debris flows/avalanches) in landslide-prone areas are of great concern because they often cause catastrophic disasters as a result of their long run-out distances and large impact forces. To investigate the factors influencing granular mass flow mobility, experimental tests were conducted in a flume model. Granular materials consisting of homogeneous sand and non- homogeneous sandy soil were used for studying particle size effects. Run-out tests with variable flow masses, water contents, and sloping channel confinement parameters were conducted as well. The results indicated that granular mass flow mobility was significantly influenced by the initial water content; a critical water content corresponding to the smallest flow mobility exists for different granular materials. An increase in the total flow mass generally induced a reduction in the travel angle (an increase in flow mobility). Consistent with field observations, the travel angles for different granular materials decreased roughly in proportion to the logarithm of mass. The flume model tests illustrate that the measured travel angles increase as the proportion of fine particles increases. Interestingly, natural terrain possesses critical confinement characteristics for different granular mass flows. 展开更多
关键词 granular mass flow MOBILITY water content flow mass fine particle channel confinement
下载PDF
Influence of Associated Cations on the Transport and Adsorption of Chloride Ions in the Nano-channel of Calcium Aluminosilicate Hydrate Gel:A Molecular Dynamics Study
4
作者 YANG Jun ZHANG Gaozhan +2 位作者 DING Qingjun WANG Aiguo HOU Dongshuai 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第5期963-976,共14页
Molecular dynamics simulation was utilized to investigate the transport and adsorption of chloride in the nanopore of calcium aluminosilicate hydrate(C-A-S-H)with associated cation types of Ca,Mg,Na and K.The local io... Molecular dynamics simulation was utilized to investigate the transport and adsorption of chloride in the nanopore of calcium aluminosilicate hydrate(C-A-S-H)with associated cation types of Ca,Mg,Na and K.The local ionic structure,atomic dynamics and bond stability were analyzed to elucidate the interaction between cations and chloride ions.The results show that interfacial chloride is absorbed through the ion pairing formation in the vicinity of C-A-S-H substrate.Interfacial cations can simultaneously interact aluminosilicate chains,water molecules and Cl^(-)ions,which restrict the motion of interfacial Cl^(-)ions.Pore solution chloride can be immobilized through the solvation effect of cations.Cations along with their hydration shell can connect to neighboring Cl^(-)ions to decrease their mobility.Owing to the varied ionic chemistry,cations show different interaction strength with neighboring water molecules and anions,which determines the chloride transport behavior in the nanopore of C-A-S-H.The chloride immobilization capacity of C-A-S-H nanopore with different associated cations is listed in following order:Mg^(2+)Ca^(2+)<Na^(+)≈K^(+),which agrees reasonably with previous experiments. 展开更多
关键词 calcium aluminosilicate hydrate nanometer channel confinement chloride immobilization associated cations ionic structure
下载PDF
Numerical simulation on the frosting and heat transfer characteristics of plate-fin heat exchanger considering confinement effect 被引量:1
5
作者 Xiaoling Yang Xue Liu +3 位作者 Xiaojun Dong Yang Meng Yu Hou Tianwei Lai 《Energy Storage and Saving》 2022年第3期136-147,共12页
In refrigerating industry,frost commonly deposits on the confined cold surfaces of heat exchangers,which affects the heat transfer performance.Along the confined flow path of the heat exchanger,the frosting at downstr... In refrigerating industry,frost commonly deposits on the confined cold surfaces of heat exchangers,which affects the heat transfer performance.Along the confined flow path of the heat exchanger,the frosting at downstream is affected by the parameters from the upstream.In this study,a numerical model considering the confinement effect has been proposed to predict frosting characteristics in plate-fin heat exchanger.Convection-diffusion equations for humid air and empirical correlations for local frost density are employed in the numerical prediction.Frosting behavior and heat transfer in the confined channel are investigated with different humid air parameters and cold surface temperatures.The results indicate that frost thickness in the confined channel is thicker than that in open space under the same inlet parameters.The frost layer is thicker and fluffier along the confined channel.In addition,the air temperature difference between inlet and outlet of the confined channel enlarges with frosting.Under the same average temperature of upper and lower surfaces,the heat and mass transfer of frosting are enhanced with diminishing temperature difference of upper and lower surfaces.In such condition,frosting is mainly influenced by the cold surface with the lower temperature. 展开更多
关键词 Heat exchanger FROSTING confined channel Numerical simulation Heat transfer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部