The ionic transport in sub-nanochannels plays a key role in energy storage,yet suffers from a high energy barrier.Wetting sub-nanochannels is crucial to accelerate ionic transport,but the introduction of water is chal...The ionic transport in sub-nanochannels plays a key role in energy storage,yet suffers from a high energy barrier.Wetting sub-nanochannels is crucial to accelerate ionic transport,but the introduction of water is challenging because of the hydrophobic extreme confinement.We propose wetting the channels by the exothermic hydration process of pre-intercalated ions,the effect of which varies distinctly with different ionic hydration structures and energies.Compared to the failed pre-intercalation of SO_(4)^(2-),HSO_(4)^(-) with weak hydration energy results in a marginal effect on the HOMO(Highest Occupied Molecular Orbital)level of water to avoid water splitting during the electrochemical intercalation.Meanwhile,the ability of water introduction is reserved by the initial incomplete dissociation state of HSO_(4)^(-),so the consequent exothermic reionization and hydration processes of the intercalated HSO_(4)^(-) promote the water introduction into sub-nanochannels,finally forming the stable confined water through hydrogen bonding with functional groups.The wetted channels exhibit a significantly enhanced ionic diffusion coef-ficient by~9.4 times.展开更多
This study investigates the dynamical behaviors of nearest neighbor asymmetric coupled systems in a confined space.First, the study derivative analytical stability and synchronization conditions for the asymmetrically...This study investigates the dynamical behaviors of nearest neighbor asymmetric coupled systems in a confined space.First, the study derivative analytical stability and synchronization conditions for the asymmetrically coupled system in an unconfined space, which are then validated through numerical simulations. Simulation results show that asymmetric coupling has a significant impact on synchronization conditions. Moreover, it is observed that irrespective of whether the system is confined, an increase in coupling asymmetry leads to a hastened synchronization pace. Additionally, the study examines the effects of boundaries on the system's collective behaviors via numerical experiments. The presence of boundaries ensures the system's stability and synchronization, and reducing these boundaries can expedite the synchronization process and amplify its effects. Finally, the study reveals that the system's output amplitude exhibits stochastic resonance as the confined boundary size increases.展开更多
Plasma Science and Technology (PST) journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplina...Plasma Science and Technology (PST) journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field,in a timely manner.This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas.展开更多
Plasma Science and Technology(PST) journal assists in advancing plasma science and technology by reporting important, novel, helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplin...Plasma Science and Technology(PST) journal assists in advancing plasma science and technology by reporting important, novel, helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field, in a timely manner. This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas;inertially confined plasmas;astrophysics and space plasmas;and interdisciplinary science of these;and the engineering and technology development and application from them.展开更多
Directly modulated 850-nm vertical-cavity surface-emitting lasers(VCSELs)with the advantages of low cost,high modulation speed,good reliability,and low power consumption,are the key sources in the optical interconnect...Directly modulated 850-nm vertical-cavity surface-emitting lasers(VCSELs)with the advantages of low cost,high modulation speed,good reliability,and low power consumption,are the key sources in the optical interconnects with multimode fibers for the supercomputers,data centers,and machine learning applications[1−3].Typically,non-return-tozero(NRZ)modulation format is used.展开更多
Plasma Science and Technology (PST) journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplina...Plasma Science and Technology (PST) journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field,in a timely manner.This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas;inertially confined plasmas;astrophysics and space plasmas;and interdisciplinary science of these;and the engineering and technology development and application from them.展开更多
Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the succ...Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the successful application of the new method.In order to realize the stability control of the roadway surrounding rock,the mechanical model of the roof and rib support structure is established,and the influence mechanism of the automatically formed roadway parameters on the compound force is revealed.On this basis,the roof and rib support structure technology of confined lightweight concrete is proposed,and its mechanical tests under different eccentricity are carried out.The results show that the bearing capacity of confined lightweight concrete specimens is basically the same as that of ordinary confined concrete specimens.The bearing capacity of confined lightweight concrete specimens under different eccentricities is 1.95 times higher than those of U-shaped steel specimens.By comparing the test results with the theoretical calculated results of the confined concrete,the calculation method of the bearing capacity for the confined lightweight concrete structure is selected.The design method of confined lightweight concrete support structure is established,and is successfully applied in the extra-large mine,Ningtiaota Coal Mine,China.展开更多
Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,whic...Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,which makes it difficult to meet the requirements of ground control under complex conditions. As a new support form with high strength and rigidity, the confined concrete arch plays an important role in controlling the rock deformation under complex conditions. The section shape of the tunnel has an important impact on the mechanical properties and design of the support system. However, studies on the mechanical properties and influence mechanism of the new confined concrete arch are rarely reported. To this end, the mechanical properties of traditional U-shaped steel and new confined concrete arches are compared and comparative tests on arches of circular and straight-leg semicircular shapes in deep tunnels are conducted. A large mechanical testing system for underground engineering support structure is developed. The mechanical properties and influence mechanism of confined concrete arches with different section shapes under different loading modes and cross-section parameters are systematically studied. Test results show that the bearing capacity of the confined concrete arch is 2.10 times that of the U-shaped steel arch, and the bearing capacity of the circular confined concrete arch is 2.27 times that of the straight-leg semicircular arch. Among the various influencing factors and their engineering parameters,the lateral stress coefficient has the greatest impact on the bearing capacity of the confined concrete arch,followed by the steel pipe wall thickness, steel strength, and core concrete strength. Subsequently, the economic index of bearing capacity and cost is established, and the optimization design method for the confined concrete arch is proposed. Finally, this design method is applied to a high-stress tunnel under complex conditions, and the deformation of the surrounding rock is effectively controlled.展开更多
Aiming at the four issues of underground storage state,exploitation mechanism,crude oil flow and efficient recovery,the key theoretical and technical issues and countermeasures for effective development of Gulong shal...Aiming at the four issues of underground storage state,exploitation mechanism,crude oil flow and efficient recovery,the key theoretical and technical issues and countermeasures for effective development of Gulong shale oil are put forward.Through key exploration and research on fluid occurrence,fluid phase change,exploitation mechanism,oil start-up mechanism,flow regime/pattern,exploitation mode and enhanced oil recovery(EOR)of shale reservoirs with different storage spaces,multi-scale occurrence states of shale oil and phase behavior of fluid in nano confined space were provided,the multi-phase,multi-scale flow mode and production mechanism with hydraulic fracture-shale bedding fracture-matrix infiltration as the core was clarified,and a multi-scale flow mathematical model and recoverable reserves evaluation method were preliminarily established.The feasibility of development mode with early energy replenishment and recovery factor of 3o%was discussed.Based on these,the researches of key theories and technologies for effective development of Gulong shale oil are proposed to focus on:(1)in-situ sampling and non-destructive testing of core and fluid;(2)high-temperature,high-pressure,nano-scale laboratory simulation experiment;(3)fusion of multi-scale multi-flow regime numerical simulation technology and large-scale application software;(4)waterless(CO_(2))fracturing technique and the fracturing technique for increasing the vertical fracture height;(5)early energy replenishment to enhance oil recovery;(6)lifecycle technical and economic evaluation.Moreover,a series of exploitation tests should be performed on site as soon as possible to verify the theoretical understanding,optimize the exploitation mode,form supporting technologies,and provide a generalizable development model,thereby supporting and guiding the effective development and production of Gulong shale oil.展开更多
Industrial production of chemical cement leads to extreme emissions of greenhouse gases.Biological or bioinspired sustainable materials for soil treatment projects can be employed instead of chemical cement to heal th...Industrial production of chemical cement leads to extreme emissions of greenhouse gases.Biological or bioinspired sustainable materials for soil treatment projects can be employed instead of chemical cement to heal the carbon cycle in the ecosystem.The enzyme-induced calcite precipitation(EICP)method is one of the novel bio-inspired technologies that can be employed in soil treatment projects to increase desired properties of soils.While the monotonic and cyclic behavior of the enzymatically treated sands has been investigated comprehensively,the strain accumulation pattern in these improved soils under cyclic traffic loads has not been evaluated yet.In this paper,confined and unconfined cyclic compression tests are applied to the enzymatically lightly cemented sands,and the effects of the different parameters on their strain accumulation pattern are investigated for the first time in the literature.This study uses two types of specimens with unconfined compression strengths(UCS)equal to 42 kPa and 266 kPa.It is shown that the treated specimens have a rate-dependent behavior where cyclic loads with low frequencies lead to more resilient and plastic strains in the specimens.The results show that by approaching the maximum applied stresses to the UCS of the specimens(by breaking more calcite bonds between sand particles),the rate dependency behavior of specimens will reduce.Investigation of the effects of the cementation level demonstrated that by increasing the amount of the precipitated calcite from 0.38%to 0.83%,accumulated plastic strains are reduced almost 95%under the same loading condition.Effects of the initial static loads,confining pressures,the number of cycles,and amplitudes of the cyclic loads are also evaluated.展开更多
This paper gives a summary of the organization and the presentations delivered at the 10th Conference on Magnetically Confined Fusion Theory and Simulation(CMCFTS)held in Zhuhai,China,from 28th to 31st October 2022.Th...This paper gives a summary of the organization and the presentations delivered at the 10th Conference on Magnetically Confined Fusion Theory and Simulation(CMCFTS)held in Zhuhai,China,from 28th to 31st October 2022.The conference focused on the latest progress in the research of the magnetic confined fusion plasma theory and simulations,as well as the largescale numerical simulation techniques developed in recent years.This conference is held both online and offline,with about 110 domestic participants from 18 institutes participating in the live conference,and the statistical data from the live broadcast platform indicated that the online conference attracted over 20000 views per day.A summary of the conference is given,and the history of the CMCFTS is presented.A brief introduction to the poster section is also included in this paper.展开更多
Plasma Science and Technology(PST) journal assists in advancing plasma science and technology by reporting important, novel, helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplin...Plasma Science and Technology(PST) journal assists in advancing plasma science and technology by reporting important, novel, helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field, in a timely manner. This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas;inertially confined plasmas;astrophysics and space plasmas;and interdisciplinary science of these;and the engineering and technology development and application from them.展开更多
Plasma Science and Technology(PST)journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary...Plasma Science and Technology(PST)journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field,in a timely manner.This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas;inertially confined plasmas;astrophysics and space plasmas;and interdisciplinary science of these;and the engineering and technology development and application from them.展开更多
Plasma Science and Technology(PST) journal assists in advancing plasma science and technology by reporting important, novel, helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplin...Plasma Science and Technology(PST) journal assists in advancing plasma science and technology by reporting important, novel, helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field, in a timely manner. This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas.展开更多
Plasma Science and Technology(PST)journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary...Plasma Science and Technology(PST)journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field,in a timely manner.This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas;inertially confined plasmas;astrophysics and space plasmas;and interdisciplinary science of these;and the engineering and technology development and application from them.PST is sponsored jointly by the Institute of Plasma Physics of the Chinese Academy of Sciences,and the Chinese Society of Theoretical and Applied Mechanics.The journal joined the Science Citation Index in 2003,the Engineering Index in 2006,and became published online by IOP Publishing Ltd.in 2006.展开更多
Plasma Science and Technology(PST)journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary...Plasma Science and Technology(PST)journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field,in a timely manner.This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas;inertially confined plasmas;astrophysics and space plasmas;and interdisciplinary science of these;and the engineering and technology development and application from them.展开更多
Plasma Science and Technology(PST) journal assists in advancing plasma science and technology by reporting important, novel, helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplin...Plasma Science and Technology(PST) journal assists in advancing plasma science and technology by reporting important, novel, helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field, in a timely manner. This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas;inertially confined plasmas;astrophysics and space plasmas;and interdisciplinary science of these;and the engineering and technology development and application from them.展开更多
Plasma Science and Technology (PST) journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplina...Plasma Science and Technology (PST) journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field,in a timely manner.This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas;inertially confined plasmas;astrophysics and space plasmas;and interdisciplinary science of these;and the engineering and technology development and application from them.展开更多
Plasma Science and Technology(PST)journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary...Plasma Science and Technology(PST)journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field,in a timely manner.This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas;inertially confined plasmas;astrophysics and space plasmas;and interdisciplinary science of these;and the engineering and technology development and application from them.展开更多
For swarm robots moving in a harsh or uncharted outdoor environment without GPS guidance and global communication,algorithms that rely on global-based information are infeasible.Typically,traditional gene regulatory n...For swarm robots moving in a harsh or uncharted outdoor environment without GPS guidance and global communication,algorithms that rely on global-based information are infeasible.Typically,traditional gene regulatory networks(GRNs)that achieve superior performance in forming trapping pattern towards targets require accurate global positional information to guide swarm robots.This article presents a gene regulatory network with Self-organized grouping and entrapping method for swarms(SUNDER-GRN)to achieve adequate trapping performance with a large-scale swarm in a confined multitarget environment with access to only local information.A hierarchical self-organized grouping method(HSG)is proposed to structure subswarms in a distributed way.In addition,a modified distributed controller,with a relative coordinate system that is established to relieve the need for global information,is leveraged to facilitate subswarms entrapment toward different targets,thus improving the global multi-target entrapping performance.The results demonstrate the superiority of SUNDERGRN in the performance of structuring subswarms and entrapping 10 targets with 200 robots in an environment confined by obstacles and with only local information accessible.展开更多
基金supported by the National Key Research and Development Program of China(2021YFA1101300)the National Natural Science Foundation of China(Grant No.22225801,21776197,22078214,and 21905206)Special Fund for Science and Technology Innovation Team of Shanxi Province(No.202204051001009).
文摘The ionic transport in sub-nanochannels plays a key role in energy storage,yet suffers from a high energy barrier.Wetting sub-nanochannels is crucial to accelerate ionic transport,but the introduction of water is challenging because of the hydrophobic extreme confinement.We propose wetting the channels by the exothermic hydration process of pre-intercalated ions,the effect of which varies distinctly with different ionic hydration structures and energies.Compared to the failed pre-intercalation of SO_(4)^(2-),HSO_(4)^(-) with weak hydration energy results in a marginal effect on the HOMO(Highest Occupied Molecular Orbital)level of water to avoid water splitting during the electrochemical intercalation.Meanwhile,the ability of water introduction is reserved by the initial incomplete dissociation state of HSO_(4)^(-),so the consequent exothermic reionization and hydration processes of the intercalated HSO_(4)^(-) promote the water introduction into sub-nanochannels,finally forming the stable confined water through hydrogen bonding with functional groups.The wetted channels exhibit a significantly enhanced ionic diffusion coef-ficient by~9.4 times.
基金Project supported by the Natural Science Foundation of Shandong Province of China for the Youth (Grant No. ZR2023QA102)。
文摘This study investigates the dynamical behaviors of nearest neighbor asymmetric coupled systems in a confined space.First, the study derivative analytical stability and synchronization conditions for the asymmetrically coupled system in an unconfined space, which are then validated through numerical simulations. Simulation results show that asymmetric coupling has a significant impact on synchronization conditions. Moreover, it is observed that irrespective of whether the system is confined, an increase in coupling asymmetry leads to a hastened synchronization pace. Additionally, the study examines the effects of boundaries on the system's collective behaviors via numerical experiments. The presence of boundaries ensures the system's stability and synchronization, and reducing these boundaries can expedite the synchronization process and amplify its effects. Finally, the study reveals that the system's output amplitude exhibits stochastic resonance as the confined boundary size increases.
文摘Plasma Science and Technology (PST) journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field,in a timely manner.This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas.
文摘Plasma Science and Technology(PST) journal assists in advancing plasma science and technology by reporting important, novel, helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field, in a timely manner. This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas;inertially confined plasmas;astrophysics and space plasmas;and interdisciplinary science of these;and the engineering and technology development and application from them.
基金supported by the National Natural Science Foundation of China(Nos.62075209,62275243,and 61675193)the Beijing Natural Science Foundation(No.Z200006).
文摘Directly modulated 850-nm vertical-cavity surface-emitting lasers(VCSELs)with the advantages of low cost,high modulation speed,good reliability,and low power consumption,are the key sources in the optical interconnects with multimode fibers for the supercomputers,data centers,and machine learning applications[1−3].Typically,non-return-tozero(NRZ)modulation format is used.
文摘Plasma Science and Technology (PST) journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field,in a timely manner.This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas;inertially confined plasmas;astrophysics and space plasmas;and interdisciplinary science of these;and the engineering and technology development and application from them.
基金Project(2023YFC2907600)supported by the National Key Research and Development Program of ChinaProjects(42077267,42277174,52074164)supported by the National Natural Science Foundation of ChinaProject(2024JCCXSB01)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the successful application of the new method.In order to realize the stability control of the roadway surrounding rock,the mechanical model of the roof and rib support structure is established,and the influence mechanism of the automatically formed roadway parameters on the compound force is revealed.On this basis,the roof and rib support structure technology of confined lightweight concrete is proposed,and its mechanical tests under different eccentricity are carried out.The results show that the bearing capacity of confined lightweight concrete specimens is basically the same as that of ordinary confined concrete specimens.The bearing capacity of confined lightweight concrete specimens under different eccentricities is 1.95 times higher than those of U-shaped steel specimens.By comparing the test results with the theoretical calculated results of the confined concrete,the calculation method of the bearing capacity for the confined lightweight concrete structure is selected.The design method of confined lightweight concrete support structure is established,and is successfully applied in the extra-large mine,Ningtiaota Coal Mine,China.
基金supported by the National Natural Science Foundation of China (Nos. 42277174, 42077267, and 52074164)the Natural Science Foundation of Shandong Province, China (No. ZR2020JQ23)+2 种基金Major Scientific and Technological Innovation Project of Shandong Province, China (No. 2019SDZY04)the Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program, China (No. 2019KJG013)the opening project of State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology (No. KFJJ21-02Z)。
文摘Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,which makes it difficult to meet the requirements of ground control under complex conditions. As a new support form with high strength and rigidity, the confined concrete arch plays an important role in controlling the rock deformation under complex conditions. The section shape of the tunnel has an important impact on the mechanical properties and design of the support system. However, studies on the mechanical properties and influence mechanism of the new confined concrete arch are rarely reported. To this end, the mechanical properties of traditional U-shaped steel and new confined concrete arches are compared and comparative tests on arches of circular and straight-leg semicircular shapes in deep tunnels are conducted. A large mechanical testing system for underground engineering support structure is developed. The mechanical properties and influence mechanism of confined concrete arches with different section shapes under different loading modes and cross-section parameters are systematically studied. Test results show that the bearing capacity of the confined concrete arch is 2.10 times that of the U-shaped steel arch, and the bearing capacity of the circular confined concrete arch is 2.27 times that of the straight-leg semicircular arch. Among the various influencing factors and their engineering parameters,the lateral stress coefficient has the greatest impact on the bearing capacity of the confined concrete arch,followed by the steel pipe wall thickness, steel strength, and core concrete strength. Subsequently, the economic index of bearing capacity and cost is established, and the optimization design method for the confined concrete arch is proposed. Finally, this design method is applied to a high-stress tunnel under complex conditions, and the deformation of the surrounding rock is effectively controlled.
基金Supported by the National Natural Science Foundation of China(U22B2075).
文摘Aiming at the four issues of underground storage state,exploitation mechanism,crude oil flow and efficient recovery,the key theoretical and technical issues and countermeasures for effective development of Gulong shale oil are put forward.Through key exploration and research on fluid occurrence,fluid phase change,exploitation mechanism,oil start-up mechanism,flow regime/pattern,exploitation mode and enhanced oil recovery(EOR)of shale reservoirs with different storage spaces,multi-scale occurrence states of shale oil and phase behavior of fluid in nano confined space were provided,the multi-phase,multi-scale flow mode and production mechanism with hydraulic fracture-shale bedding fracture-matrix infiltration as the core was clarified,and a multi-scale flow mathematical model and recoverable reserves evaluation method were preliminarily established.The feasibility of development mode with early energy replenishment and recovery factor of 3o%was discussed.Based on these,the researches of key theories and technologies for effective development of Gulong shale oil are proposed to focus on:(1)in-situ sampling and non-destructive testing of core and fluid;(2)high-temperature,high-pressure,nano-scale laboratory simulation experiment;(3)fusion of multi-scale multi-flow regime numerical simulation technology and large-scale application software;(4)waterless(CO_(2))fracturing technique and the fracturing technique for increasing the vertical fracture height;(5)early energy replenishment to enhance oil recovery;(6)lifecycle technical and economic evaluation.Moreover,a series of exploitation tests should be performed on site as soon as possible to verify the theoretical understanding,optimize the exploitation mode,form supporting technologies,and provide a generalizable development model,thereby supporting and guiding the effective development and production of Gulong shale oil.
文摘Industrial production of chemical cement leads to extreme emissions of greenhouse gases.Biological or bioinspired sustainable materials for soil treatment projects can be employed instead of chemical cement to heal the carbon cycle in the ecosystem.The enzyme-induced calcite precipitation(EICP)method is one of the novel bio-inspired technologies that can be employed in soil treatment projects to increase desired properties of soils.While the monotonic and cyclic behavior of the enzymatically treated sands has been investigated comprehensively,the strain accumulation pattern in these improved soils under cyclic traffic loads has not been evaluated yet.In this paper,confined and unconfined cyclic compression tests are applied to the enzymatically lightly cemented sands,and the effects of the different parameters on their strain accumulation pattern are investigated for the first time in the literature.This study uses two types of specimens with unconfined compression strengths(UCS)equal to 42 kPa and 266 kPa.It is shown that the treated specimens have a rate-dependent behavior where cyclic loads with low frequencies lead to more resilient and plastic strains in the specimens.The results show that by approaching the maximum applied stresses to the UCS of the specimens(by breaking more calcite bonds between sand particles),the rate dependency behavior of specimens will reduce.Investigation of the effects of the cementation level demonstrated that by increasing the amount of the precipitated calcite from 0.38%to 0.83%,accumulated plastic strains are reduced almost 95%under the same loading condition.Effects of the initial static loads,confining pressures,the number of cycles,and amplitudes of the cyclic loads are also evaluated.
基金supported by the National Magnetic Confinement Fusion Energy Research and Development Program of China(No.2019YFE03090100)。
文摘This paper gives a summary of the organization and the presentations delivered at the 10th Conference on Magnetically Confined Fusion Theory and Simulation(CMCFTS)held in Zhuhai,China,from 28th to 31st October 2022.The conference focused on the latest progress in the research of the magnetic confined fusion plasma theory and simulations,as well as the largescale numerical simulation techniques developed in recent years.This conference is held both online and offline,with about 110 domestic participants from 18 institutes participating in the live conference,and the statistical data from the live broadcast platform indicated that the online conference attracted over 20000 views per day.A summary of the conference is given,and the history of the CMCFTS is presented.A brief introduction to the poster section is also included in this paper.
文摘Plasma Science and Technology(PST) journal assists in advancing plasma science and technology by reporting important, novel, helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field, in a timely manner. This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas;inertially confined plasmas;astrophysics and space plasmas;and interdisciplinary science of these;and the engineering and technology development and application from them.
文摘Plasma Science and Technology(PST)journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field,in a timely manner.This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas;inertially confined plasmas;astrophysics and space plasmas;and interdisciplinary science of these;and the engineering and technology development and application from them.
文摘Plasma Science and Technology(PST) journal assists in advancing plasma science and technology by reporting important, novel, helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field, in a timely manner. This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas.
文摘Plasma Science and Technology(PST)journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field,in a timely manner.This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas;inertially confined plasmas;astrophysics and space plasmas;and interdisciplinary science of these;and the engineering and technology development and application from them.PST is sponsored jointly by the Institute of Plasma Physics of the Chinese Academy of Sciences,and the Chinese Society of Theoretical and Applied Mechanics.The journal joined the Science Citation Index in 2003,the Engineering Index in 2006,and became published online by IOP Publishing Ltd.in 2006.
文摘Plasma Science and Technology(PST)journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field,in a timely manner.This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas;inertially confined plasmas;astrophysics and space plasmas;and interdisciplinary science of these;and the engineering and technology development and application from them.
文摘Plasma Science and Technology(PST) journal assists in advancing plasma science and technology by reporting important, novel, helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field, in a timely manner. This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas;inertially confined plasmas;astrophysics and space plasmas;and interdisciplinary science of these;and the engineering and technology development and application from them.
文摘Plasma Science and Technology (PST) journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field,in a timely manner.This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas;inertially confined plasmas;astrophysics and space plasmas;and interdisciplinary science of these;and the engineering and technology development and application from them.
文摘Plasma Science and Technology(PST)journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field,in a timely manner.This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas;inertially confined plasmas;astrophysics and space plasmas;and interdisciplinary science of these;and the engineering and technology development and application from them.
基金supported in part by National Key R&D Program of China(Grant Nos.2021ZD0111501,2021ZD0111502)the Key Laboratory of Digital Signal and Image Processing of Guangdong Province+8 种基金the Key Laboratory of Intelligent Manufacturing Technology(Shantou University)Ministry of Education,the Science and Technology Planning Project of Guangdong Province of China(Grant No.180917144960530)the Project of Educational Commission of Guangdong Province of China(Grant No.2017KZDXM032)the State Key Lab of Digital Manufacturing Equipment&Technology(grant number DMETKF2019020)National Natural Science Foundation of China(Grant Nos.62176147,62002369)STU Scientific Research Foundation for Talents(Grant No.NTF21001)Science and Technology Planning Project of Guangdong Province of China(Grant Nos.2019A050520001,2021A0505030072,2022A1515110660)Science and Technology Special Funds Project of Guangdong Province of China(Grant Nos.STKJ2021176,STKJ2021019)Guangdong Special Support Program for Outstanding Talents(Grant No.2021JC06X549)。
文摘For swarm robots moving in a harsh or uncharted outdoor environment without GPS guidance and global communication,algorithms that rely on global-based information are infeasible.Typically,traditional gene regulatory networks(GRNs)that achieve superior performance in forming trapping pattern towards targets require accurate global positional information to guide swarm robots.This article presents a gene regulatory network with Self-organized grouping and entrapping method for swarms(SUNDER-GRN)to achieve adequate trapping performance with a large-scale swarm in a confined multitarget environment with access to only local information.A hierarchical self-organized grouping method(HSG)is proposed to structure subswarms in a distributed way.In addition,a modified distributed controller,with a relative coordinate system that is established to relieve the need for global information,is leveraged to facilitate subswarms entrapment toward different targets,thus improving the global multi-target entrapping performance.The results demonstrate the superiority of SUNDERGRN in the performance of structuring subswarms and entrapping 10 targets with 200 robots in an environment confined by obstacles and with only local information accessible.