Metavolcanic rocks are well-exposed in the Kribi area within the Nyong Group, Congo craton, but their origin, age, and tectonic significance are poorly known.Here we report integrated field mapping and petrography,geo...Metavolcanic rocks are well-exposed in the Kribi area within the Nyong Group, Congo craton, but their origin, age, and tectonic significance are poorly known.Here we report integrated field mapping and petrography,geochemistry, and LA-ICP-MS zircon U-Pb ages of these metavolcanic rocks to constrain their petrogenesis and geodynamic implications. The studied rocks consist of mafic granulite, garnet-amphibole gneiss, and garnet-biotite gneiss, and occur interbanded with sharp contact and intruded by syenite dyke. These metavolcanic rocks are classified as MORB-like tholeiitic to calc-alkaline basalts,basaltic andesite, and rhyodacite rocks with within-plate setting geochemical signatures. The metabasite rocks(basalt to basaltic andesite protolith) are likely the equivalent of a spinel peridotite product representing ~ 2–5 %partial melting of metasomatized mantle source, while the metarhyodacite rocks are derived from the fractional crystallization of the same parental magma. Zircon U-Pb data revealed that the rhyodacite rocks initially formed at2671 ± 51 Ma and underwent later metamorphism at2065 ± 55 Ma. The Neoarchean protolith age is comparable to the ca. 2628 Ma tholeiitic magmatism and ca.2666 Ma high-K granites, suggesting bimodal Neoarchean magmatic event within the Ntem Complex, while the metamorphic ages fall within the ca. 2100–2000 Ma highgrade tectono-metamorphic event attributed to Eburnean/Trans-Amazonian orogeny. At the regional scale,metavolcanic rocks with similar origins and ages are documented in the Sa o Francisco Craton in Brazil, suggesting comparable geodynamic evolution on both sides of the south Atlantic during the Paleoproterozoic.展开更多
A magnetic-based geophysical study was performed across the southern part of Cameroon to investigate the boundary between the Archean Congo craton and the Pan-African metamorphic belt. Magnetic gradient techniques inc...A magnetic-based geophysical study was performed across the southern part of Cameroon to investigate the boundary between the Archean Congo craton and the Pan-African metamorphic belt. Magnetic gradient techniques including Euler deconvolution and Tilt derivative have been applied to an aeromagnetic data profile to determine the depth of sources and their lateral extension. 2.5D magnetic modeling shows that the prominent magnetic positive anomalies observed on total magnetic map of south Cameroon are produced by deep and strongly magnetic bodies under the Pan-African formations mainly an important dyke formation structure with a high susceptibility of 0.041 (SI units), at an average depth of 4148 m and with a lateral extension of about 10 km. These bodies are interpreted to have emplaced at high crustal levels in a continental collision zone and were subsequently metamorphosed at granulite grade conditions, during the Pan-African orogeny about 620 Ma ago.展开更多
The West Congo Belt (WCB) is one of many Proterozoic orogens considered to be mobile belts adjacent to the margins of Archean cratons. This orogen underlies the western margin of the Congo craton in central Africa and...The West Congo Belt (WCB) is one of many Proterozoic orogens considered to be mobile belts adjacent to the margins of Archean cratons. This orogen underlies the western margin of the Congo craton in central Africa and outcrops from south-west Gabon to north-west Angola. In the Republic of Congo, the Mayombe Chain in south-west has preserved a geological record of Proterozoic to early Paleozoic rocks that have been investigated to understand the evolution of the West Congo Belt within the regional tectonic context. Investigation into lithostratigraphy and structural architecture of the Mayombe Chain has been done by earlier workers since the 19th century. However, the lack of consistent and diverse geochronological data induced several interpretations of its geodynamic setting. The chain was previously thought to be the result of more than two orogenic cycles, and subsequently to be the result of a single orogenic cycle. Recent petrographic, geochronological, geochemical data and paleogeographic reconstructions allow redefining the tectonic context and the main lithostratigraphic subdivisions of the Mayombe Chain. It is currently recognized that the Mayombe Chain consists of three major tectonostratigraphic domains: Western, Central and Eastern, which are prolongated by the Niari-Nyanga foreland basin. These lithounits seem to have been formed through a complex history that included: (i) Late Paleoproterozoic sedimentation, magmatism and metamorphism between 2110 and 1970 Ma related to the Eburnean tectono-thermal event;(ii) Neoproterozoic rifting magmatism and sedimentation;and (iii) Pan-African tectono-thermal event between 620 and 496 Ma leading to the amalgamation of western Gondwana. In this contribution, we review existing literature on this part of the West Congo Belt and summarize the current knowledge of its geologic setting with a focus on structure, lithostratigraphy and metamorphism. We aim to show how current research, with multidisciplinary approaches, changed the interpretation of the Mayombe with consideration to the Araçuaí-West Congo Orogenic system.展开更多
The Central Africa Fold Belt(CAFB)is a collision belt endowed with gold deposits in Eastern Cameroon area mined for about 50 years.However,favorable areas for gold exploration are poorly known.This paper presents(1)th...The Central Africa Fold Belt(CAFB)is a collision belt endowed with gold deposits in Eastern Cameroon area mined for about 50 years.However,favorable areas for gold exploration are poorly known.This paper presents(1)the kinematics of the brittle deformation in the Kékem area in the SW portion of the Central Cameroon Shear Zone and(2)constraints gold mineralization events with respect to the collisional evolution of the CAFB.The authors interpret that the conjugate ENE to E and NNW to NW trending lineament corresponds to the synthetic(R)and the antithetic(R’)shears,which accompanied the dextral slip along the NE to ENE striking shear.The latter coincides with the last 570-552 Ma D3 dextral simple shear-dominated transpression,which is parallel to the BétaréOya shear zone hosting gold deposits.Gold mineralizations,which mainly occurred during the last dextral shearing,are disseminated within quartz veins associated to Riedel’s previous structures reactivated due to late collisional activities of the CAFB as brittle deformation.Gold mineralizations occurred mainly during the 570-552 Ma D3 event.The reactivation,which might be due to dextral simple shear during mylonitzation,plausibly remobilized the early gold deposits hosted in syn-compressional rocks and/or possibly focused deep-sourced fluid mixed with those released by dehydration.Therefore,the Central Cameroon Shear Zone where Kékem is located,and which shows similar petrographical and structural features to those controling Batouri gold district,is a target area for gold exploration in Cameroon.展开更多
Serpentinized rocks closely associated with Paleoproterozoic eclogitic metabasites were recently discovered at Eseka area in the northwestern edge of the Congo craton in southern Cameroon.Here,we present new field dat...Serpentinized rocks closely associated with Paleoproterozoic eclogitic metabasites were recently discovered at Eseka area in the northwestern edge of the Congo craton in southern Cameroon.Here,we present new field data,petrography,and first comprehensible wholerock geochemistry data and discuss the protolith and tectonic significance of these serpentinites in the region.The studied rock samples are characterized by pseudomorphic textures,including mesh microstructure formed by serpentine intergrowths with cores of olivine,bastites after pyroxene.Antigorite constitutes almost the whole bulk of the rocks and is associated(to the less amount)with tremolite,talc,spinel,and magnetite.Whole-rock chemistry of the Eseka serpentinites led to the distinction of two types.Type 1 has high MgO(>40 wt%)content and high Mg#values(88.80)whereas Type 2 serpentinite samples display relatively low MgO concentration and Mg#values(<40 and 82.88 wt%,respectively).Both types have low Al/Si and high Mg/Si ratios than the primitive mantle,reflecting a refractory abyssal mantle peridotite protolith.Partial melting modeling indicates that these rocks were derived from melting of spinel peridotite before serpentinization.Bulk rock high-Ti content is similar to the values of subducted serpentinites(>50 ppm).This similarity,associated with the high Cr contents,spinel-peridotite protolith compositions and Mg/Si and Al/Si ratios imply that the studied serpentinites were formed in a subductionrelated environment.The U-shaped chondrite normalizedREE patterns of serpentinized peridotites,coupled with similar enrichments in LREE and HFSE,suggest the refertilized nature due to melt/rock interaction prior to serpentinization.Based on the results,we suggest that the Eseka serpentinized peridotites are mantle residues that suffered a high degree of partial melting in a subductionrelated environment,especially in Supra Subduction Zone setting.These new findings suggest that the Nyong series in Cameroon represents an uncontested Paleoproterozoic suture zone between the Congo craton and the Sao Francisco craton in Brazil.展开更多
The Zambezi Belt in southern Africa has been regarded as a part of the 570-530 Ma Kuunga Orogen formed by a series of collision of Archean cratons and Proterozoic orogenic belts.Here,we report new petrological,geochem...The Zambezi Belt in southern Africa has been regarded as a part of the 570-530 Ma Kuunga Orogen formed by a series of collision of Archean cratons and Proterozoic orogenic belts.Here,we report new petrological,geochemical,and zircon U-Pb geochronological data of various metamorphic rocks(felsic to mafic orthogneiss,pelitic schist,and felsic paragneiss)from the Zambezi Belt in northeastern Zimbabwe,and evaluate the timing and P-T conditions of the collisional event as well as protolith formation.Geochemical data of felsic orthogneiss indicate within-plate granite signature,whereas those of mafic orthogneiss suggest MORB,ocean-island,or within-plate affinities.Metamorphic P-Testimates for orthogneisses indicate significant P-T variation within the study area(700-780 C/6.7-7.2 kbar to 800-875 C/10-11 kbar)suggesting that the Zambezi Belt might correspond to a suture zone with several discrete crustal blocks.Zircon cores from felsic orthogneisses yielded two magmatic ages:2655±21 Ma and 813士5 Ma,which suggests Neoarchean and Early Neoproterozoic crustal growth related to within-plate magmatism.Detrital zircons from metasediments display various ages from Neoarchean to Neoproterozoic(ca.2700-750 Ma).The Neoarchean(ca.2700-2630 Ma)and Paleoproterozoic(ca.2200-1700 Ma)zircons could have been derived from the adjacent Kalahari Craton and the Magondi Belt in Zimbabwe,respectively.The Choma-Kalomo Block and the Lufilian Belt in Zambia might be proximal sources of the Meso-to Neoproterozoic(ca.1500-950 Ma)and early Neoproterozoic(ca.900-750 Ma)detrital zircons,respectively.Such detrital zircons from adjacent terranes possibly deposited during late Neoproterozoic(744-670 Ma),and subsequently underwent highgrade metamorphism at 557-555 Ma possibly related to the collision of the Congo and Kalahari Cratons during the latest Neoproterozoic to Cambrian.In contrast,670-627 Ma metamorphic ages obtained from metasediments are slightly older than previous reports,but consistent with^680-650 Ma metamorphic ages reported from different parts of the Kuunga Orogen,suggesting Cryogenian thermal events before the final collision.展开更多
The Bipindi iron ore district is located in the central section of the Nyong Complex at the northwestern margin of the Congo Craton in Southwest Cameroon.This iron district contains numerous iron mineralization hosted...The Bipindi iron ore district is located in the central section of the Nyong Complex at the northwestern margin of the Congo Craton in Southwest Cameroon.This iron district contains numerous iron mineralization hosted by the Mewongo,Bibole,Kouambo,and Zambi banded iron formations(BIFs).These BIFs contain magnetite as the main iron ore mineral associated with pyrite,and gangue minerals are quartz with minor chlorite and amphibole.The origin of iron ore from these BIFs was investigated using a combination of in-situ magnetite and whole-rock chemistry.The studied BIF ore samples have a narrow range of TFe between 30.90 wt.%and 43.20 wt.%,indicating a low-grade ore.The geochemical signatures of magnetite such as low contents of base metals(e.g.,Cu,Co,V,and Zn)and low Co/Zn ratios<0.85 indicate a hydrothermal origin.Combined with the geochemical features of these BIFs,e.g.,high Fe/Ti and Fe/Al ratios(mean>600 and>75,respectively),we suggest that magnetite was derived from a mixture of seawater and~0.1%low-temperature hydrothermal fluids in an oxidizing environment.Collectively,low-temperature hydrothermal and later metamorphic fluids were necessary for the transformation of the protolith Nyong Complex BIFs to iron ore.展开更多
文摘Metavolcanic rocks are well-exposed in the Kribi area within the Nyong Group, Congo craton, but their origin, age, and tectonic significance are poorly known.Here we report integrated field mapping and petrography,geochemistry, and LA-ICP-MS zircon U-Pb ages of these metavolcanic rocks to constrain their petrogenesis and geodynamic implications. The studied rocks consist of mafic granulite, garnet-amphibole gneiss, and garnet-biotite gneiss, and occur interbanded with sharp contact and intruded by syenite dyke. These metavolcanic rocks are classified as MORB-like tholeiitic to calc-alkaline basalts,basaltic andesite, and rhyodacite rocks with within-plate setting geochemical signatures. The metabasite rocks(basalt to basaltic andesite protolith) are likely the equivalent of a spinel peridotite product representing ~ 2–5 %partial melting of metasomatized mantle source, while the metarhyodacite rocks are derived from the fractional crystallization of the same parental magma. Zircon U-Pb data revealed that the rhyodacite rocks initially formed at2671 ± 51 Ma and underwent later metamorphism at2065 ± 55 Ma. The Neoarchean protolith age is comparable to the ca. 2628 Ma tholeiitic magmatism and ca.2666 Ma high-K granites, suggesting bimodal Neoarchean magmatic event within the Ntem Complex, while the metamorphic ages fall within the ca. 2100–2000 Ma highgrade tectono-metamorphic event attributed to Eburnean/Trans-Amazonian orogeny. At the regional scale,metavolcanic rocks with similar origins and ages are documented in the Sa o Francisco Craton in Brazil, suggesting comparable geodynamic evolution on both sides of the south Atlantic during the Paleoproterozoic.
文摘A magnetic-based geophysical study was performed across the southern part of Cameroon to investigate the boundary between the Archean Congo craton and the Pan-African metamorphic belt. Magnetic gradient techniques including Euler deconvolution and Tilt derivative have been applied to an aeromagnetic data profile to determine the depth of sources and their lateral extension. 2.5D magnetic modeling shows that the prominent magnetic positive anomalies observed on total magnetic map of south Cameroon are produced by deep and strongly magnetic bodies under the Pan-African formations mainly an important dyke formation structure with a high susceptibility of 0.041 (SI units), at an average depth of 4148 m and with a lateral extension of about 10 km. These bodies are interpreted to have emplaced at high crustal levels in a continental collision zone and were subsequently metamorphosed at granulite grade conditions, during the Pan-African orogeny about 620 Ma ago.
文摘The West Congo Belt (WCB) is one of many Proterozoic orogens considered to be mobile belts adjacent to the margins of Archean cratons. This orogen underlies the western margin of the Congo craton in central Africa and outcrops from south-west Gabon to north-west Angola. In the Republic of Congo, the Mayombe Chain in south-west has preserved a geological record of Proterozoic to early Paleozoic rocks that have been investigated to understand the evolution of the West Congo Belt within the regional tectonic context. Investigation into lithostratigraphy and structural architecture of the Mayombe Chain has been done by earlier workers since the 19th century. However, the lack of consistent and diverse geochronological data induced several interpretations of its geodynamic setting. The chain was previously thought to be the result of more than two orogenic cycles, and subsequently to be the result of a single orogenic cycle. Recent petrographic, geochronological, geochemical data and paleogeographic reconstructions allow redefining the tectonic context and the main lithostratigraphic subdivisions of the Mayombe Chain. It is currently recognized that the Mayombe Chain consists of three major tectonostratigraphic domains: Western, Central and Eastern, which are prolongated by the Niari-Nyanga foreland basin. These lithounits seem to have been formed through a complex history that included: (i) Late Paleoproterozoic sedimentation, magmatism and metamorphism between 2110 and 1970 Ma related to the Eburnean tectono-thermal event;(ii) Neoproterozoic rifting magmatism and sedimentation;and (iii) Pan-African tectono-thermal event between 620 and 496 Ma leading to the amalgamation of western Gondwana. In this contribution, we review existing literature on this part of the West Congo Belt and summarize the current knowledge of its geologic setting with a focus on structure, lithostratigraphy and metamorphism. We aim to show how current research, with multidisciplinary approaches, changed the interpretation of the Mayombe with consideration to the Araçuaí-West Congo Orogenic system.
文摘The Central Africa Fold Belt(CAFB)is a collision belt endowed with gold deposits in Eastern Cameroon area mined for about 50 years.However,favorable areas for gold exploration are poorly known.This paper presents(1)the kinematics of the brittle deformation in the Kékem area in the SW portion of the Central Cameroon Shear Zone and(2)constraints gold mineralization events with respect to the collisional evolution of the CAFB.The authors interpret that the conjugate ENE to E and NNW to NW trending lineament corresponds to the synthetic(R)and the antithetic(R’)shears,which accompanied the dextral slip along the NE to ENE striking shear.The latter coincides with the last 570-552 Ma D3 dextral simple shear-dominated transpression,which is parallel to the BétaréOya shear zone hosting gold deposits.Gold mineralizations,which mainly occurred during the last dextral shearing,are disseminated within quartz veins associated to Riedel’s previous structures reactivated due to late collisional activities of the CAFB as brittle deformation.Gold mineralizations occurred mainly during the 570-552 Ma D3 event.The reactivation,which might be due to dextral simple shear during mylonitzation,plausibly remobilized the early gold deposits hosted in syn-compressional rocks and/or possibly focused deep-sourced fluid mixed with those released by dehydration.Therefore,the Central Cameroon Shear Zone where Kékem is located,and which shows similar petrographical and structural features to those controling Batouri gold district,is a target area for gold exploration in Cameroon.
文摘Serpentinized rocks closely associated with Paleoproterozoic eclogitic metabasites were recently discovered at Eseka area in the northwestern edge of the Congo craton in southern Cameroon.Here,we present new field data,petrography,and first comprehensible wholerock geochemistry data and discuss the protolith and tectonic significance of these serpentinites in the region.The studied rock samples are characterized by pseudomorphic textures,including mesh microstructure formed by serpentine intergrowths with cores of olivine,bastites after pyroxene.Antigorite constitutes almost the whole bulk of the rocks and is associated(to the less amount)with tremolite,talc,spinel,and magnetite.Whole-rock chemistry of the Eseka serpentinites led to the distinction of two types.Type 1 has high MgO(>40 wt%)content and high Mg#values(88.80)whereas Type 2 serpentinite samples display relatively low MgO concentration and Mg#values(<40 and 82.88 wt%,respectively).Both types have low Al/Si and high Mg/Si ratios than the primitive mantle,reflecting a refractory abyssal mantle peridotite protolith.Partial melting modeling indicates that these rocks were derived from melting of spinel peridotite before serpentinization.Bulk rock high-Ti content is similar to the values of subducted serpentinites(>50 ppm).This similarity,associated with the high Cr contents,spinel-peridotite protolith compositions and Mg/Si and Al/Si ratios imply that the studied serpentinites were formed in a subductionrelated environment.The U-shaped chondrite normalizedREE patterns of serpentinized peridotites,coupled with similar enrichments in LREE and HFSE,suggest the refertilized nature due to melt/rock interaction prior to serpentinization.Based on the results,we suggest that the Eseka serpentinized peridotites are mantle residues that suffered a high degree of partial melting in a subductionrelated environment,especially in Supra Subduction Zone setting.These new findings suggest that the Nyong series in Cameroon represents an uncontested Paleoproterozoic suture zone between the Congo craton and the Sao Francisco craton in Brazil.
基金supported by a Grant-in-Aid for Scientific Research(B) from Japan Society for the Promotion of Science(JSPS)(Nos.26302009 and 18H01300)the NIPR General Collaboration Projects(No.26-34) to Tsunogae
文摘The Zambezi Belt in southern Africa has been regarded as a part of the 570-530 Ma Kuunga Orogen formed by a series of collision of Archean cratons and Proterozoic orogenic belts.Here,we report new petrological,geochemical,and zircon U-Pb geochronological data of various metamorphic rocks(felsic to mafic orthogneiss,pelitic schist,and felsic paragneiss)from the Zambezi Belt in northeastern Zimbabwe,and evaluate the timing and P-T conditions of the collisional event as well as protolith formation.Geochemical data of felsic orthogneiss indicate within-plate granite signature,whereas those of mafic orthogneiss suggest MORB,ocean-island,or within-plate affinities.Metamorphic P-Testimates for orthogneisses indicate significant P-T variation within the study area(700-780 C/6.7-7.2 kbar to 800-875 C/10-11 kbar)suggesting that the Zambezi Belt might correspond to a suture zone with several discrete crustal blocks.Zircon cores from felsic orthogneisses yielded two magmatic ages:2655±21 Ma and 813士5 Ma,which suggests Neoarchean and Early Neoproterozoic crustal growth related to within-plate magmatism.Detrital zircons from metasediments display various ages from Neoarchean to Neoproterozoic(ca.2700-750 Ma).The Neoarchean(ca.2700-2630 Ma)and Paleoproterozoic(ca.2200-1700 Ma)zircons could have been derived from the adjacent Kalahari Craton and the Magondi Belt in Zimbabwe,respectively.The Choma-Kalomo Block and the Lufilian Belt in Zambia might be proximal sources of the Meso-to Neoproterozoic(ca.1500-950 Ma)and early Neoproterozoic(ca.900-750 Ma)detrital zircons,respectively.Such detrital zircons from adjacent terranes possibly deposited during late Neoproterozoic(744-670 Ma),and subsequently underwent highgrade metamorphism at 557-555 Ma possibly related to the collision of the Congo and Kalahari Cratons during the latest Neoproterozoic to Cambrian.In contrast,670-627 Ma metamorphic ages obtained from metasediments are slightly older than previous reports,but consistent with^680-650 Ma metamorphic ages reported from different parts of the Kuunga Orogen,suggesting Cryogenian thermal events before the final collision.
基金supported by the Central South University Postdoctoral Research Fund(No.22020084)。
文摘The Bipindi iron ore district is located in the central section of the Nyong Complex at the northwestern margin of the Congo Craton in Southwest Cameroon.This iron district contains numerous iron mineralization hosted by the Mewongo,Bibole,Kouambo,and Zambi banded iron formations(BIFs).These BIFs contain magnetite as the main iron ore mineral associated with pyrite,and gangue minerals are quartz with minor chlorite and amphibole.The origin of iron ore from these BIFs was investigated using a combination of in-situ magnetite and whole-rock chemistry.The studied BIF ore samples have a narrow range of TFe between 30.90 wt.%and 43.20 wt.%,indicating a low-grade ore.The geochemical signatures of magnetite such as low contents of base metals(e.g.,Cu,Co,V,and Zn)and low Co/Zn ratios<0.85 indicate a hydrothermal origin.Combined with the geochemical features of these BIFs,e.g.,high Fe/Ti and Fe/Al ratios(mean>600 and>75,respectively),we suggest that magnetite was derived from a mixture of seawater and~0.1%low-temperature hydrothermal fluids in an oxidizing environment.Collectively,low-temperature hydrothermal and later metamorphic fluids were necessary for the transformation of the protolith Nyong Complex BIFs to iron ore.