In this paper, a finite element method is developed to numericallyevaluate the shear coefficient of Timoshenko's beam with multiplyconnected cross section. With focus on analyzing shear stressesdistributed at the ...In this paper, a finite element method is developed to numericallyevaluate the shear coefficient of Timoshenko's beam with multiplyconnected cross section. With focus on analyzing shear stressesdistributed at the neutral axis of the beam, an improved definitionof the shear coeffi- cient is presented. Based on this definition, aGalerkin-type finite element formulation is proposed to analyze theshear stresses and shear deflections. Numerical solutions of theexamples for some typical cross-sections are compared with thetheoretical results. The shear coefficient of tower sections of theTsing Ma Bridge is calculated by use of the proposed approach, sothat the finite element modeling of The bridge can be developed withthe accurate values of the sectional properties.展开更多
文摘In this paper, a finite element method is developed to numericallyevaluate the shear coefficient of Timoshenko's beam with multiplyconnected cross section. With focus on analyzing shear stressesdistributed at the neutral axis of the beam, an improved definitionof the shear coeffi- cient is presented. Based on this definition, aGalerkin-type finite element formulation is proposed to analyze theshear stresses and shear deflections. Numerical solutions of theexamples for some typical cross-sections are compared with thetheoretical results. The shear coefficient of tower sections of theTsing Ma Bridge is calculated by use of the proposed approach, sothat the finite element modeling of The bridge can be developed withthe accurate values of the sectional properties.