Conjugated polymers attracted much attention in the past few decades due to their wide applications in various optoelectronic devices and circuits. The charge transport process in conjugated polymers mainly occurs in ...Conjugated polymers attracted much attention in the past few decades due to their wide applications in various optoelectronic devices and circuits. The charge transport process in conjugated polymers mainly occurs in the intrachain and interchain parts, where the interchain charge transport is generally slower than intrachain transport and may slow down the whole charge transport properties. Aiming at this issue, herein we employ semiconducting single-walled carbon nanotubes(s-SWNTs) as efficient charge-transporting jointing channels between conjugated polymer chains for improving the charge transport performance. Taking the typical conjugated polymer, ploy-N-alkyl-diketopyrrolopyrrole-dithienylthieno[3,2-b]thiophene(PDPP-TT) as an example, polymer thin film transistors(PTFTs) based on the optimized blended films of PDPP-TT/s-SWNTs exhibit an obviously increasing device performance compared with the devices based on pure PDPP-TT films, with the hole and electron mobility increased from 2.32 to 12.32 cm^2 V^-1 s^-1 and from 2.02 to 5.77 cm^2 V^-1 s^-1, respectively. This result suggests the importance of forming continuous conducting channels in conjugated polymer thin films, which can also be extended to other polymeric electronic and optoelectronic devices to promote their potential applications in large-area, low-cost and high performance polymeric electronic devices and circuits.展开更多
基金financial support from the Ministry of Science and Technology of China (2017YFA0204503 and 2016YFB0401100)the National Natural Science Foundation of China (51725304, 51633006, 51703159, 51733004 and 21875259)+1 种基金the Strategic Priority Research Program (XDB12030300)the Chinese Academy of Sciences and the National Program for Support of Top-notch Young Professionals
文摘Conjugated polymers attracted much attention in the past few decades due to their wide applications in various optoelectronic devices and circuits. The charge transport process in conjugated polymers mainly occurs in the intrachain and interchain parts, where the interchain charge transport is generally slower than intrachain transport and may slow down the whole charge transport properties. Aiming at this issue, herein we employ semiconducting single-walled carbon nanotubes(s-SWNTs) as efficient charge-transporting jointing channels between conjugated polymer chains for improving the charge transport performance. Taking the typical conjugated polymer, ploy-N-alkyl-diketopyrrolopyrrole-dithienylthieno[3,2-b]thiophene(PDPP-TT) as an example, polymer thin film transistors(PTFTs) based on the optimized blended films of PDPP-TT/s-SWNTs exhibit an obviously increasing device performance compared with the devices based on pure PDPP-TT films, with the hole and electron mobility increased from 2.32 to 12.32 cm^2 V^-1 s^-1 and from 2.02 to 5.77 cm^2 V^-1 s^-1, respectively. This result suggests the importance of forming continuous conducting channels in conjugated polymer thin films, which can also be extended to other polymeric electronic and optoelectronic devices to promote their potential applications in large-area, low-cost and high performance polymeric electronic devices and circuits.