In this paper, by using the stability theory of stochastic differential equations, the average-consensus problem with noise perturbation is investigated. It is analytically proved that the consensus could be achieved ...In this paper, by using the stability theory of stochastic differential equations, the average-consensus problem with noise perturbation is investigated. It is analytically proved that the consensus could be achieved with a probability of one. Furthermore, numerical examples are taken to illustrate the effectiveness of the theoretical result.展开更多
Consensus problem is investigated for heterogeneous multi-agent systems composed of first-order agents and second-order agents in this paper. Leader-following consensus protocol is adopted to solve consensus problem o...Consensus problem is investigated for heterogeneous multi-agent systems composed of first-order agents and second-order agents in this paper. Leader-following consensus protocol is adopted to solve consensus problem of heterogeneous multi-agent systems with time-varying communication and input delays. By constructing Lyapunov-Krasovkii functional, sufficient consensus conditions in linear matrix inequality(LMI) form are obtained for the system under fixed interconnection topology. Moreover, consensus conditions are also obtained for the heterogeneous systems under switching topologies with time delays. Simulation examples are given to illustrate effectiveness of the results.展开更多
In this paper, consensus problems in discrete-time multiagent systems with time-invariant delays are considered. In order to characterize the structures of communication topologies, the concept of "pre-leader-followe...In this paper, consensus problems in discrete-time multiagent systems with time-invariant delays are considered. In order to characterize the structures of communication topologies, the concept of "pre-leader-follower" decomposition is introduced. Then, a necessary and sufficient condition for state consensus is established. By this method, consensus problems in networks with a single time-delay, as well as with multiple time-delays, are studied, and some necessary and sufficient conditions for solvability of consensus problems are obtained.展开更多
This paper investigates the distributed H_(∞)consensus problem for a first-order multiagent system where both cooperative and antagonistic interactions coexist.In the presence of external disturbances,a distributed c...This paper investigates the distributed H_(∞)consensus problem for a first-order multiagent system where both cooperative and antagonistic interactions coexist.In the presence of external disturbances,a distributed control algorithm using local information is addressed and a sufficient condition to get the H_(∞)control gain is obtained,which make the states of the agents in the same group converge to a common point while the inputs of each agent are constrained in the nonconvex sets.Finally,a numerical simulation is exhibited to illustrate the theory.展开更多
This paper studies the consensus problems for a group of agents with switching topology and time-varying communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed c...This paper studies the consensus problems for a group of agents with switching topology and time-varying communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed consensus protocol is proposed, which only depends on the agent's own information and its neighbors' partial information. By introducing a decomposition of the state vector and performing a state space transformation, the closed-loop dynamics of the multi-agent system is converted into two decoupled subsystems. Based on the decoupled subsystems, some sufficient conditions for the convergence to consensus are established, which provide the upper bounds on the admissible communication delays. Also, the explicit expression of the consensus state is derived. Moreover, the results on the consensus seeking of the group of high-order agents have been extended to a network of agents with dynamics modeled as a completely controllable linear time-invariant system. It is proved that the convergence to consensus of this network is equivalent to that of the group of high-order agents. Finally, some numerical examples are given to demonstrate the effectiveness of the main results.展开更多
In this paper,the distributed fuzzy fault-tolerant tracking consensus problem of leader-follower multi-agent systems(MASs)is studied.The objective system includes actuator faults,mismatched parameter uncertainties,non...In this paper,the distributed fuzzy fault-tolerant tracking consensus problem of leader-follower multi-agent systems(MASs)is studied.The objective system includes actuator faults,mismatched parameter uncertainties,nonlinear functions,and exogenous disturbances under switching communication topologies.To solve this problem,a distributed fuzzy fault-tolerant controller is proposed for each follower by adaptive mechanisms to track the state of the leader.Furthermore,the fuzzy logic system is utilized to approximate the unknown nonlinear dynamics.An error estimator is introduced between the mismatched parameter matrix and the input matrix.Then,a selective adaptive law with relative state information is adopted and applied.When calculating the Lyapunov function’s derivative,the coupling terms related to consensus error and mismatched parameter uncertainties can be eliminated.Finally,a numerical simulation is given to validate the effectiveness of the proposed protocol.展开更多
This article investigates the consensus problem of the second-order multi-agent systems with an active leader and coupling time delay in direct graph. One decentralized state control rule is constructed for each agent...This article investigates the consensus problem of the second-order multi-agent systems with an active leader and coupling time delay in direct graph. One decentralized state control rule is constructed for each agent to track the active leader and it is proved that the proposed control scheme enables the consensus to be obtained when the adjacency topology is fixed/switched. Simulation results show effectiveness of the proposed theoretical analysis.展开更多
In this paper, the leader-following consensus problem for multi-agent linear dynamic systems is considered. All agents and leader have identical multi-input multi-output (MIMO) linear dynamics that can be of any ord...In this paper, the leader-following consensus problem for multi-agent linear dynamic systems is considered. All agents and leader have identical multi-input multi-output (MIMO) linear dynamics that can be of any order, and only the output information of each agent is delivered throughout the communication network. When the interaction topology is fixed, the leader-following consensus is attained by Ho~ dynamic output feedback control, and the sufficient condition of robust controllers is equal to the solvability of linear matrix inequality (LMI). The whole analysis is based on spectral decomposition and an equivalent decoupled structure achieved, and the stability of the system is proved. Finally, we extended the theoretical results to the case that the interaction topology is switching. The simulation results for multiple mobile robots show the effectiveness of the devised methods.展开更多
This paper deals with the consensus problem of multi-agent systems with second-order dynamics. The objective is to design algorithms such that all agents will have same positions and velocities. First, a reference mod...This paper deals with the consensus problem of multi-agent systems with second-order dynamics. The objective is to design algorithms such that all agents will have same positions and velocities. First, a reference model based consensus algorithm is proposed. It is proved that the consensus can be achieved if the communication graph has a spanning tree. Different from most of the consensus algorithms proposed in the literature, the parameters of the control laws are different among agents. Therefore, each agent can design its control law independently. Secondly, it gives a consensus algorithm for the case that the velocities of the agents are not available. Thirdly, the effectiveness of the input delay and the communication delay is considered. It shows that consensus can be achieved if the input delay of every agent is smaller than a bound related to parameters in its control law. Finally, some numerical examples are given to illustrate the proposed results.展开更多
We study the leader-following consensus stability and stabilization of networked multi-teleoperator systems with interval time-varying communication delays. With the construction of a suitable Lyapunov–Krasovskii fun...We study the leader-following consensus stability and stabilization of networked multi-teleoperator systems with interval time-varying communication delays. With the construction of a suitable Lyapunov–Krasovskii functional and the utilization of the reciprocally convex approach, novel delay-dependent consensus stability and stabilization conditions for the systems are established in terms of linear matrix inequalities, which can easily be solved by various effective optimization algorithms. One illustrative example is given to illustrate the effectiveness of the proposed methods.展开更多
Theoretical analysis of consensus for networked multi-agent systems with switching topologies was conducted.Supposing that information-exchange topologies of networked system are dynamic,a modified linear protocol is ...Theoretical analysis of consensus for networked multi-agent systems with switching topologies was conducted.Supposing that information-exchange topologies of networked system are dynamic,a modified linear protocol is proffered which is more practical than existing ones.The definition of trajectory consensus is given and a new consensus protocol is exhibited such that multi-agent system achieves trajectory consensus.In addition,a formation control strategy is designed.A common Lyapunov function is proposed to analyze the consensus convergence of networked multi-agent systems with switching topologies.Simulations are provided to demonstrate the effectiveness of the theoretical results.展开更多
This paper considers the consensus problem of dynamical multiple agents that communicate via a directed moving neighbourhood random network. Each agent performs random walk on a weighted directed network. Agents inter...This paper considers the consensus problem of dynamical multiple agents that communicate via a directed moving neighbourhood random network. Each agent performs random walk on a weighted directed network. Agents interact with each other through random unidirectional information flow when they coincide in the underlying network at a given instant. For such a framework, we present sufficient conditions for almost sure asymptotic consensus. Numerical examples are taken to show the effectiveness of the obtained results.展开更多
This paper studies consensus problems in weighted scale-free networks of asymmetrically coupled dynamical units, where the asymmetry in a given link is deter:mined by the relative degree of the involved nodes. It sho...This paper studies consensus problems in weighted scale-free networks of asymmetrically coupled dynamical units, where the asymmetry in a given link is deter:mined by the relative degree of the involved nodes. It shows that the asymmetry of interactions has a great effect on the consensus. Especially, when the interactions are dominant from higher- to lower-degree nodes, both the convergence speed and the robustness to communication delay are enhanced.展开更多
To fully consider the complementary role of different energy sources and reduce the curtailment of renewable energy(RE)in high RE penetration systems,a hierarchical optimization algorithm is proposed to simultaneously...To fully consider the complementary role of different energy sources and reduce the curtailment of renewable energy(RE)in high RE penetration systems,a hierarchical optimization algorithm is proposed to simultaneously optimize the capacity of RE generation and energy storage systems(ESS).Time sequence simulation(TSS)technology is adopted to fully consider the regional RE resource characteristics and make the model more reliable.An optimization model for evaluating ESS capacity is established at a lower level.To overcome the high dimensional complexity of time sequence data,this paper re-formulates this sub-model as a consensus problem,which can be solved by a distributed approach to minimize the system’s total investment costs.At the upper level,the model for assessing the proportion of wind and solar capacity is developed by maximizing the RE generation.The golden section Fibonacci tree optimization(GSFTO)algorithm is utilized to improve the efficiency and solution accuracy.The results show that the algorithm and model are feasible and applicable for the identified purposes,which can provide a useful guidance for the development of power generation and the energy storage capacity in high RE penetration systems.展开更多
This paper considers the simultaneous attack problem of multiple missiles against a maneuvering target. Different from most of the existing literature in which the simultaneous attack problem is formulated as a consen...This paper considers the simultaneous attack problem of multiple missiles against a maneuvering target. Different from most of the existing literature in which the simultaneous attack problem is formulated as a consensus problem of missiles' time-to-go estimates, this paper formulates it as the consensus problem of missiles' ranges-to-go. Based on this strategy, novel distributed guidance laws are proposed to solve the simultaneous attack problem with the target of unknown maneuverability.Adaptive control method is introduced to estimate the upper bound of the target's acceleration. The effectiveness of the proposed guidance laws is verified both theoretically and numerically.展开更多
文摘In this paper, by using the stability theory of stochastic differential equations, the average-consensus problem with noise perturbation is investigated. It is analytically proved that the consensus could be achieved with a probability of one. Furthermore, numerical examples are taken to illustrate the effectiveness of the theoretical result.
基金supported by National Natural Science Foundation of China(Nos.61104092,61134007 and 61203147)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Consensus problem is investigated for heterogeneous multi-agent systems composed of first-order agents and second-order agents in this paper. Leader-following consensus protocol is adopted to solve consensus problem of heterogeneous multi-agent systems with time-varying communication and input delays. By constructing Lyapunov-Krasovkii functional, sufficient consensus conditions in linear matrix inequality(LMI) form are obtained for the system under fixed interconnection topology. Moreover, consensus conditions are also obtained for the heterogeneous systems under switching topologies with time delays. Simulation examples are given to illustrate effectiveness of the results.
基金the National Natural Science Foundation of China (Grant Nos. 60674050 and 60528007)the National 973 Program (Grant No.2002CB312200)+1 种基金the National 863 Program (Grant No. 2006AA04Z258)11-5 project (Grant No. A2120061303)
文摘In this paper, consensus problems in discrete-time multiagent systems with time-invariant delays are considered. In order to characterize the structures of communication topologies, the concept of "pre-leader-follower" decomposition is introduced. Then, a necessary and sufficient condition for state consensus is established. By this method, consensus problems in networks with a single time-delay, as well as with multiple time-delays, are studied, and some necessary and sufficient conditions for solvability of consensus problems are obtained.
文摘This paper investigates the distributed H_(∞)consensus problem for a first-order multiagent system where both cooperative and antagonistic interactions coexist.In the presence of external disturbances,a distributed control algorithm using local information is addressed and a sufficient condition to get the H_(∞)control gain is obtained,which make the states of the agents in the same group converge to a common point while the inputs of each agent are constrained in the nonconvex sets.Finally,a numerical simulation is exhibited to illustrate the theory.
基金supported by the National Natural Science Foundation of China(No.60674050,60736022,10972002,60774089,60704039)
文摘This paper studies the consensus problems for a group of agents with switching topology and time-varying communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed consensus protocol is proposed, which only depends on the agent's own information and its neighbors' partial information. By introducing a decomposition of the state vector and performing a state space transformation, the closed-loop dynamics of the multi-agent system is converted into two decoupled subsystems. Based on the decoupled subsystems, some sufficient conditions for the convergence to consensus are established, which provide the upper bounds on the admissible communication delays. Also, the explicit expression of the consensus state is derived. Moreover, the results on the consensus seeking of the group of high-order agents have been extended to a network of agents with dynamics modeled as a completely controllable linear time-invariant system. It is proved that the convergence to consensus of this network is equivalent to that of the group of high-order agents. Finally, some numerical examples are given to demonstrate the effectiveness of the main results.
基金This work was supported by Tianjin Natural Science Foundation of China(20JCYBJC01060,20JCQNJC01450)the National Natural Science Foundation of China(61973175)Tianjin Postgraduate Scientific Research and Innovation Project(2020YJSZXB03,2020YJSZXB12).
文摘In this paper,the distributed fuzzy fault-tolerant tracking consensus problem of leader-follower multi-agent systems(MASs)is studied.The objective system includes actuator faults,mismatched parameter uncertainties,nonlinear functions,and exogenous disturbances under switching communication topologies.To solve this problem,a distributed fuzzy fault-tolerant controller is proposed for each follower by adaptive mechanisms to track the state of the leader.Furthermore,the fuzzy logic system is utilized to approximate the unknown nonlinear dynamics.An error estimator is introduced between the mismatched parameter matrix and the input matrix.Then,a selective adaptive law with relative state information is adopted and applied.When calculating the Lyapunov function’s derivative,the coupling terms related to consensus error and mismatched parameter uncertainties can be eliminated.Finally,a numerical simulation is given to validate the effectiveness of the proposed protocol.
基金supported by the National Natural Science Foundation of China(11301492)the Ph.D.Programs Foundation of Ministry of Education of China(20130145120005)the TianYuan Special Funds of the National Natural Science Foundation of China(11226134)
文摘This article investigates the consensus problem of the second-order multi-agent systems with an active leader and coupling time delay in direct graph. One decentralized state control rule is constructed for each agent to track the active leader and it is proved that the proposed control scheme enables the consensus to be obtained when the adjacency topology is fixed/switched. Simulation results show effectiveness of the proposed theoretical analysis.
文摘In this paper, the leader-following consensus problem for multi-agent linear dynamic systems is considered. All agents and leader have identical multi-input multi-output (MIMO) linear dynamics that can be of any order, and only the output information of each agent is delivered throughout the communication network. When the interaction topology is fixed, the leader-following consensus is attained by Ho~ dynamic output feedback control, and the sufficient condition of robust controllers is equal to the solvability of linear matrix inequality (LMI). The whole analysis is based on spectral decomposition and an equivalent decoupled structure achieved, and the stability of the system is proved. Finally, we extended the theoretical results to the case that the interaction topology is switching. The simulation results for multiple mobile robots show the effectiveness of the devised methods.
基金supported by the National Natural Science Foundation of China (Grant No. 60904022)
文摘This paper deals with the consensus problem of multi-agent systems with second-order dynamics. The objective is to design algorithms such that all agents will have same positions and velocities. First, a reference model based consensus algorithm is proposed. It is proved that the consensus can be achieved if the communication graph has a spanning tree. Different from most of the consensus algorithms proposed in the literature, the parameters of the control laws are different among agents. Therefore, each agent can design its control law independently. Secondly, it gives a consensus algorithm for the case that the velocities of the agents are not available. Thirdly, the effectiveness of the input delay and the communication delay is considered. It shows that consensus can be achieved if the input delay of every agent is smaller than a bound related to parameters in its control law. Finally, some numerical examples are given to illustrate the proposed results.
基金MEST&DGIST(12-IT-04,Development of the Medical&IT Convergence System)the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(Grant Nos.2011-0009273 and 2012-0000479)
文摘We study the leader-following consensus stability and stabilization of networked multi-teleoperator systems with interval time-varying communication delays. With the construction of a suitable Lyapunov–Krasovskii functional and the utilization of the reciprocally convex approach, novel delay-dependent consensus stability and stabilization conditions for the systems are established in terms of linear matrix inequalities, which can easily be solved by various effective optimization algorithms. One illustrative example is given to illustrate the effectiveness of the proposed methods.
基金Projects(61075065, 60774045) supported by the National Natural Science Foundation of China Project(CX2010B080) supported by Hunan Provincial Innovation Foundation For Postgraduate,China
文摘Theoretical analysis of consensus for networked multi-agent systems with switching topologies was conducted.Supposing that information-exchange topologies of networked system are dynamic,a modified linear protocol is proffered which is more practical than existing ones.The definition of trajectory consensus is given and a new consensus protocol is exhibited such that multi-agent system achieves trajectory consensus.In addition,a formation control strategy is designed.A common Lyapunov function is proposed to analyze the consensus convergence of networked multi-agent systems with switching topologies.Simulations are provided to demonstrate the effectiveness of the theoretical results.
文摘This paper considers the consensus problem of dynamical multiple agents that communicate via a directed moving neighbourhood random network. Each agent performs random walk on a weighted directed network. Agents interact with each other through random unidirectional information flow when they coincide in the underlying network at a given instant. For such a framework, we present sufficient conditions for almost sure asymptotic consensus. Numerical examples are taken to show the effectiveness of the obtained results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10775060 and 10805033)the Doctoral Education Foundation of National Education Committeethe Natural Science Foundation of Gansu Province
文摘This paper studies consensus problems in weighted scale-free networks of asymmetrically coupled dynamical units, where the asymmetry in a given link is deter:mined by the relative degree of the involved nodes. It shows that the asymmetry of interactions has a great effect on the consensus. Especially, when the interactions are dominant from higher- to lower-degree nodes, both the convergence speed and the robustness to communication delay are enhanced.
基金This work was supported jointly by the National Key R&D Program of China(2017YFB0902200)State Grid Corporation of China Science and Technology Project(5228001700CW)the Qinghai Province Science and Technology Plan(2018-GX-A6).
文摘To fully consider the complementary role of different energy sources and reduce the curtailment of renewable energy(RE)in high RE penetration systems,a hierarchical optimization algorithm is proposed to simultaneously optimize the capacity of RE generation and energy storage systems(ESS).Time sequence simulation(TSS)technology is adopted to fully consider the regional RE resource characteristics and make the model more reliable.An optimization model for evaluating ESS capacity is established at a lower level.To overcome the high dimensional complexity of time sequence data,this paper re-formulates this sub-model as a consensus problem,which can be solved by a distributed approach to minimize the system’s total investment costs.At the upper level,the model for assessing the proportion of wind and solar capacity is developed by maximizing the RE generation.The golden section Fibonacci tree optimization(GSFTO)algorithm is utilized to improve the efficiency and solution accuracy.The results show that the algorithm and model are feasible and applicable for the identified purposes,which can provide a useful guidance for the development of power generation and the energy storage capacity in high RE penetration systems.
基金supported by the National Natural Science Foundation of China under Grant Nos.61473005,11332001,and 61471242the Research Project Fund under Grant No.17-163-11-ZT-003-018-01+2 种基金the Air Force Advance Research Fund under Grant No.303020503the Joint Fund of Equipment development and Aerospace Science and Technology under Grant No.6141B0624050101the National Defense Basic Scientific Research Program(Major)of China
文摘This paper considers the simultaneous attack problem of multiple missiles against a maneuvering target. Different from most of the existing literature in which the simultaneous attack problem is formulated as a consensus problem of missiles' time-to-go estimates, this paper formulates it as the consensus problem of missiles' ranges-to-go. Based on this strategy, novel distributed guidance laws are proposed to solve the simultaneous attack problem with the target of unknown maneuverability.Adaptive control method is introduced to estimate the upper bound of the target's acceleration. The effectiveness of the proposed guidance laws is verified both theoretically and numerically.