The motive of this work is to present a computational design using the stochastic scaled conjugate gradient(SCG)neural networks(NNs)called as SCGNNs for the socio-ecological dynamics(SED)with reef ecosystems and conse...The motive of this work is to present a computational design using the stochastic scaled conjugate gradient(SCG)neural networks(NNs)called as SCGNNs for the socio-ecological dynamics(SED)with reef ecosystems and conservation estimation.The mathematical descriptions of the SED model are provided that is dependent upon five categories,macroalgae M(v),breathing coral C(v),algal turf T(v),the density of parrotfish P(v)and the opinion of human opinion X(v).The stochastic SCGNNs process is applied to formulate the SEDmodel based on the sample statistics,testing,accreditation and training.Three different variations of the SED have been provided to authenticate the stochastic SCGNNs performance through the statics for training,accreditation,and testing are 77%,12%and 11%,respectively.The obtained numerical performances have been compared with the Runge-Kutta approach to solve the SEDmodel.The reduction of mean square error(MSE)is used to investigate the numericalmeasures through the SCGNNs for solving the SED model.The precision of the SCGNNs is validated through the comparison of the results and the absolute error performances.The reliability of the SCGNNs is performed by using the correlation values,state transitions(STs),error histograms(EHs),MSE measures and regression analysis.展开更多
基金This project is funded by National Research Council of Thailand(NRCT)and Khon Kaen University:N42A650291。
文摘The motive of this work is to present a computational design using the stochastic scaled conjugate gradient(SCG)neural networks(NNs)called as SCGNNs for the socio-ecological dynamics(SED)with reef ecosystems and conservation estimation.The mathematical descriptions of the SED model are provided that is dependent upon five categories,macroalgae M(v),breathing coral C(v),algal turf T(v),the density of parrotfish P(v)and the opinion of human opinion X(v).The stochastic SCGNNs process is applied to formulate the SEDmodel based on the sample statistics,testing,accreditation and training.Three different variations of the SED have been provided to authenticate the stochastic SCGNNs performance through the statics for training,accreditation,and testing are 77%,12%and 11%,respectively.The obtained numerical performances have been compared with the Runge-Kutta approach to solve the SEDmodel.The reduction of mean square error(MSE)is used to investigate the numericalmeasures through the SCGNNs for solving the SED model.The precision of the SCGNNs is validated through the comparison of the results and the absolute error performances.The reliability of the SCGNNs is performed by using the correlation values,state transitions(STs),error histograms(EHs),MSE measures and regression analysis.