In order to analyze the initial cracking behavior of highway embankment in the regions of expansive soil, the changes in peaks of tensile stress and their location on top of the embankment for a typical highway embank...In order to analyze the initial cracking behavior of highway embankment in the regions of expansive soil, the changes in peaks of tensile stress and their location on top of the embankment for a typical highway embankment section were simulated by ABAQUS. The simulation results indicate that the matric suction was a concave distribution on top of the expansive soil foundation and that it induced differential deformation of foundation and embankment. The peaks of tensile stress on top of the embankment are not located at a fixed site, but gradually move towards the shoulder following the evaporation duration. When the evaporation intensity is larger, the peak of tensile stress on top of embankment increases at a faster rate following the evaporation duration,and its location is closer to the shoulder. The thicker expansive soil layer helps the peaks of tensile stress to reach the critical tensile stress quickly, but the embankment cannot crack when the expansive soil layer is no more than 1.5m after 30d soil surface evaporation; the higher the embankment, the smaller the peak of tensile stress occurring on top of the highway embankment, and its location will be further away from the shoulder. Therefore, a higher embankment constructed on a thinner expansive soil layer can reduce the crack generation within the highway embankment.展开更多
Cover-bearing-type bucket foundation for offshore wind turbines has been paid more and more attention due to its low cost and great bearing capacity. In order to ensure the cover-bearing mode, the muddy soil inside th...Cover-bearing-type bucket foundation for offshore wind turbines has been paid more and more attention due to its low cost and great bearing capacity. In order to ensure the cover-bearing mode, the muddy soil inside the bucket foundation should be reinforced by some soil consolidation methods, such as negative pressure and electro-osmosis. Firstly, tests were conducted to obtain the reasonable current density. Meanwhile, to improve the electro-osmotic speed and effectiveness, other factors such as intermittent power and layout of electrode, were also studied in the tests. Then, the soil reinforcing tests by negative pressure combined with electro-osmosis were performed for the muddy soil consolidation inside the bucket foundation. The results showed that soil reinforcement by negative pressure was quicker and more obvious during the early phase, and electro-osmotic method can affect more range of soil by rational arrangement of electrodes. Compared with negative pressure, the electro-osmotic method was a continuous and relatively slow process of reinforcement, which was complementary to the negative pressure method. The voltage value of electro-osmosis had little effect on the muddy soil reinforcement inside the bucket foundation, and 1.5 A was chosen as the most reasonable current value for scale model testing in the electro-osmotic method.展开更多
The process and characteristics of loading on high-speed railway bridge pile foundation were firstly obtained by means of field research and analysis,and the corresponding loading function was presented.One-dimensiona...The process and characteristics of loading on high-speed railway bridge pile foundation were firstly obtained by means of field research and analysis,and the corresponding loading function was presented.One-dimensional consolidation equation of elastic multilayered soils was then established with single drainage or double drainages under multilevel loading.Moreover,the formulas for calculating effective stress and settlement were derived from the Laplace numerical inversion transform.The three-dimensional composite analysis method of bridge pile group was improved,where the actual load conditions of pile foundation could be simulated,and the consolidation characteristics of soil layers beneath pile were also taken into account.Eventually,a corresponding program named LTPGS was developed to improve the calculation efficiency.The comparison between long-term settlement obtained from the proposed method and the in-situ measurements of pile foundation was illustrated,and a close agreement is obtained.The error between computed and measured results is less than 1 mm,and it gradually reduces with time.It is shown that the proposed method can effectively simulate the long-term settlement of pile foundation and program LTPGS can provide a reliable estimation.展开更多
Suction caisson foundations are often subjected to vertical uplift loads,but there are still no wide and spread engineering specifications on design and calculation method for uplift bearing capacity of suction caisso...Suction caisson foundations are often subjected to vertical uplift loads,but there are still no wide and spread engineering specifications on design and calculation method for uplift bearing capacity of suction caisson foundation.So it is important to establish an uplift failure criterion.In order to study the uplift bearing mechanism and failure mode of suction caisson foundation,a series of model tests were carried out considering the effects of aspect ratio,soil permeability and loading mode.Test results indicate that the residual negative pressure at the top of caisson is beneficial to enhance uplift bearing capacity.The smaller the permeability coefficient is,the higher the residual negative pressure will be.And the residual negative pressure is approximately equal to the water head that causes seepage in the caisson.When the load reaches the ultimate bearing capacity,both the top and bottom negative pressures are smaller than Su and both the top and bottom reverse bearing capacity factors are smaller than 1.0 in soft clay.Combined the uplift bearing characteristics of caisson in sandy soil and soft clay,the bearing capacity composition and the calculation method are proposed.It can provide a reference for the engineering design of suction caisson foundation under vertical load.展开更多
To investigate the bearing capacity of a caisson foundation under combined vertical,horizontal and moment loadings,the three-dimensional finite element analyses of a circular caisson foundation in homogenous sandy soi...To investigate the bearing capacity of a caisson foundation under combined vertical,horizontal and moment loadings,the three-dimensional finite element analyses of a circular caisson foundation in homogenous sandy soil subjected to combined loadings are conducted.The caisson model has a depth to breadth ratio equaling one,and a soil-caisson interface friction coefficientμ=0.3.First,the responses of caisson foundations under uniaxial vertical loading V,horizontal loading H and moment loading M are examined.Moreover,the responses of caisson foundations under combined vertical-horizontal V-H,vertical-moment V-M and horizontal-moment H-M load space are studied and presented using normalized failure envelopes generated by the load-controlled method.Subsequently,the bearing behavior of caisson foundations under combined vertical-horizontal-moment V-H-M load space,as well as the kinematic mechanisms accompanying the failure under uniaxial and combined loading,are addressed and presented for different vertical load ratios V/Vu.Finally,three equations that approximate the three-dimensional shape of the failure locus are proposed,which provides a convenient means of calculating the bearing capacity of a caisson foundation subjected to uniaxial and combined vertical,horizontal and moment loadings.展开更多
Settlement is an important criterion in the design of the foundations. It is classifying into immediate (or elastic) settlement and consolidated settlement (primary and secondary). The factors that affect the shallow ...Settlement is an important criterion in the design of the foundations. It is classifying into immediate (or elastic) settlement and consolidated settlement (primary and secondary). The factors that affect the shallow foundation settlement are the applied loads, soil stiffness, and geometric shape of foundation. Calculations of settlement depend on the parameters of soil which can be obtained from field and laboratory tests. Field and laboratory tests were conducted for twenty three sites in three different regions in Iraq (Mosul, Baghdad, and Basrah). In this research, field and laboratory tests results adopted for two sites from each region depended on the maximum and minimum bearing capacity values. Settlement for each site was calculated using numerical (mathematical) calculations and PLAXIS software under different added loads. The results of settlements beneath the foundation were competing for the sites with maximum value of bearing capacity in Mosul;Baghdad and Basrah. Also, the comparison conducted for sites of minimum bearing capacity value and the results showed different settlement values of each site. The change of settlement values under different loads was linearly in the six sites using numerical (mathematical) calculations. While, the settlement values obtained from PLAXIS software for sites with maximum bearing capacity value showed that Mosul site had the highest value due to the type of soil layers and the difference models of soil used in the software. Basrah site had a settlement value higher than Baghdad site due to the soil layers of sand type only. PLAXIS results for sites with minimum bearing capacity showed that for Basrah site the soil went to failure. While, the settlement values for Mosul and Baghdad sites were close to each other due to have nearly same soil layers. Therefore, high rise buildings could not be used in some sites. Also, soil in some locations and under some added loads needed to be improved before the implementation of any constructions.展开更多
Vacuum provides an alternative in reducing the length of preloading period for soft soil consolidation. In this method, soft clay foundation is preloaded by reducing the pore-water pressures through the application of...Vacuum provides an alternative in reducing the length of preloading period for soft soil consolidation. In this method, soft clay foundation is preloaded by reducing the pore-water pressures through the application of vacuum pressure in combination with surcharge preloading. A full scale and fully instrumented test embankment was constructed. A drainage pattern system combined with 22 m prefabricated vertical drains (PVDs) length was used with triangular pattern of 1.2 m spacing. Among the foundation instrumentation, piezometers were installed in the foundation subsoil at varying depth to measure the pore-water pressures. After 6 months of vacuum pressure application at 80 kPa, the test embankments were raised to a maximum height of 5.5 m. The effect of vacuum preloading was investigated by the field conditions, maintaining higher vacuum pressures, and unloading vacuum. The results demonstrated the efficiency of combined vacuum and surcharge preloading.展开更多
基金The National Natural Science Foundation of China(No.51378121)
文摘In order to analyze the initial cracking behavior of highway embankment in the regions of expansive soil, the changes in peaks of tensile stress and their location on top of the embankment for a typical highway embankment section were simulated by ABAQUS. The simulation results indicate that the matric suction was a concave distribution on top of the expansive soil foundation and that it induced differential deformation of foundation and embankment. The peaks of tensile stress on top of the embankment are not located at a fixed site, but gradually move towards the shoulder following the evaporation duration. When the evaporation intensity is larger, the peak of tensile stress on top of embankment increases at a faster rate following the evaporation duration,and its location is closer to the shoulder. The thicker expansive soil layer helps the peaks of tensile stress to reach the critical tensile stress quickly, but the embankment cannot crack when the expansive soil layer is no more than 1.5m after 30d soil surface evaporation; the higher the embankment, the smaller the peak of tensile stress occurring on top of the highway embankment, and its location will be further away from the shoulder. Therefore, a higher embankment constructed on a thinner expansive soil layer can reduce the crack generation within the highway embankment.
基金Supported by National Natural Science Foundation of China(No. 51109160)National High Technology Research and Development Program of China ("863" Program, No. 2012AA051705)International Science and Technology Cooperation Program of China (No. 2012DFA70490)
文摘Cover-bearing-type bucket foundation for offshore wind turbines has been paid more and more attention due to its low cost and great bearing capacity. In order to ensure the cover-bearing mode, the muddy soil inside the bucket foundation should be reinforced by some soil consolidation methods, such as negative pressure and electro-osmosis. Firstly, tests were conducted to obtain the reasonable current density. Meanwhile, to improve the electro-osmotic speed and effectiveness, other factors such as intermittent power and layout of electrode, were also studied in the tests. Then, the soil reinforcing tests by negative pressure combined with electro-osmosis were performed for the muddy soil consolidation inside the bucket foundation. The results showed that soil reinforcement by negative pressure was quicker and more obvious during the early phase, and electro-osmotic method can affect more range of soil by rational arrangement of electrodes. Compared with negative pressure, the electro-osmotic method was a continuous and relatively slow process of reinforcement, which was complementary to the negative pressure method. The voltage value of electro-osmosis had little effect on the muddy soil reinforcement inside the bucket foundation, and 1.5 A was chosen as the most reasonable current value for scale model testing in the electro-osmotic method.
基金Project(2012QNZT050)supported by the Special Fund for Basic Scientific Research of Central Colleges,ChinaProjects(51208518,U1361204,51208519,51108464)supported by the National Natural Science Foundation of China+1 种基金Project supported by the Postdoctoral Foundation of Central South University,ChinaProjects(2013RS4030,2012RS4002)sponsored by Hunan Postdoctoral Scientific Program,China
文摘The process and characteristics of loading on high-speed railway bridge pile foundation were firstly obtained by means of field research and analysis,and the corresponding loading function was presented.One-dimensional consolidation equation of elastic multilayered soils was then established with single drainage or double drainages under multilevel loading.Moreover,the formulas for calculating effective stress and settlement were derived from the Laplace numerical inversion transform.The three-dimensional composite analysis method of bridge pile group was improved,where the actual load conditions of pile foundation could be simulated,and the consolidation characteristics of soil layers beneath pile were also taken into account.Eventually,a corresponding program named LTPGS was developed to improve the calculation efficiency.The comparison between long-term settlement obtained from the proposed method and the in-situ measurements of pile foundation was illustrated,and a close agreement is obtained.The error between computed and measured results is less than 1 mm,and it gradually reduces with time.It is shown that the proposed method can effectively simulate the long-term settlement of pile foundation and program LTPGS can provide a reliable estimation.
基金the National Key Research and Development Program(Grant No.2017YFC0703408)the National Natural Science Foundation of China(Grant Nos.51678145 and 51478160)the Natural Science Foundation of Jiangsu Province(Grant No.BK20180155).
文摘Suction caisson foundations are often subjected to vertical uplift loads,but there are still no wide and spread engineering specifications on design and calculation method for uplift bearing capacity of suction caisson foundation.So it is important to establish an uplift failure criterion.In order to study the uplift bearing mechanism and failure mode of suction caisson foundation,a series of model tests were carried out considering the effects of aspect ratio,soil permeability and loading mode.Test results indicate that the residual negative pressure at the top of caisson is beneficial to enhance uplift bearing capacity.The smaller the permeability coefficient is,the higher the residual negative pressure will be.And the residual negative pressure is approximately equal to the water head that causes seepage in the caisson.When the load reaches the ultimate bearing capacity,both the top and bottom negative pressures are smaller than Su and both the top and bottom reverse bearing capacity factors are smaller than 1.0 in soft clay.Combined the uplift bearing characteristics of caisson in sandy soil and soft clay,the bearing capacity composition and the calculation method are proposed.It can provide a reference for the engineering design of suction caisson foundation under vertical load.
基金The National Natural Science Foundation of China(No.51808112,51878160,51678145)the Natural Science Foundation of Jiangsu Province(No.BK20180155)。
文摘To investigate the bearing capacity of a caisson foundation under combined vertical,horizontal and moment loadings,the three-dimensional finite element analyses of a circular caisson foundation in homogenous sandy soil subjected to combined loadings are conducted.The caisson model has a depth to breadth ratio equaling one,and a soil-caisson interface friction coefficientμ=0.3.First,the responses of caisson foundations under uniaxial vertical loading V,horizontal loading H and moment loading M are examined.Moreover,the responses of caisson foundations under combined vertical-horizontal V-H,vertical-moment V-M and horizontal-moment H-M load space are studied and presented using normalized failure envelopes generated by the load-controlled method.Subsequently,the bearing behavior of caisson foundations under combined vertical-horizontal-moment V-H-M load space,as well as the kinematic mechanisms accompanying the failure under uniaxial and combined loading,are addressed and presented for different vertical load ratios V/Vu.Finally,three equations that approximate the three-dimensional shape of the failure locus are proposed,which provides a convenient means of calculating the bearing capacity of a caisson foundation subjected to uniaxial and combined vertical,horizontal and moment loadings.
文摘Settlement is an important criterion in the design of the foundations. It is classifying into immediate (or elastic) settlement and consolidated settlement (primary and secondary). The factors that affect the shallow foundation settlement are the applied loads, soil stiffness, and geometric shape of foundation. Calculations of settlement depend on the parameters of soil which can be obtained from field and laboratory tests. Field and laboratory tests were conducted for twenty three sites in three different regions in Iraq (Mosul, Baghdad, and Basrah). In this research, field and laboratory tests results adopted for two sites from each region depended on the maximum and minimum bearing capacity values. Settlement for each site was calculated using numerical (mathematical) calculations and PLAXIS software under different added loads. The results of settlements beneath the foundation were competing for the sites with maximum value of bearing capacity in Mosul;Baghdad and Basrah. Also, the comparison conducted for sites of minimum bearing capacity value and the results showed different settlement values of each site. The change of settlement values under different loads was linearly in the six sites using numerical (mathematical) calculations. While, the settlement values obtained from PLAXIS software for sites with maximum bearing capacity value showed that Mosul site had the highest value due to the type of soil layers and the difference models of soil used in the software. Basrah site had a settlement value higher than Baghdad site due to the soil layers of sand type only. PLAXIS results for sites with minimum bearing capacity showed that for Basrah site the soil went to failure. While, the settlement values for Mosul and Baghdad sites were close to each other due to have nearly same soil layers. Therefore, high rise buildings could not be used in some sites. Also, soil in some locations and under some added loads needed to be improved before the implementation of any constructions.
文摘Vacuum provides an alternative in reducing the length of preloading period for soft soil consolidation. In this method, soft clay foundation is preloaded by reducing the pore-water pressures through the application of vacuum pressure in combination with surcharge preloading. A full scale and fully instrumented test embankment was constructed. A drainage pattern system combined with 22 m prefabricated vertical drains (PVDs) length was used with triangular pattern of 1.2 m spacing. Among the foundation instrumentation, piezometers were installed in the foundation subsoil at varying depth to measure the pore-water pressures. After 6 months of vacuum pressure application at 80 kPa, the test embankments were raised to a maximum height of 5.5 m. The effect of vacuum preloading was investigated by the field conditions, maintaining higher vacuum pressures, and unloading vacuum. The results demonstrated the efficiency of combined vacuum and surcharge preloading.