The pinching of n-dimensional closed hypersurface Mwith constant mean curvature H in unit sphere S^(n+1)( 1) is considered. Let A = ∑i,j,k h(ijk)~2( λi+ nH)~2,B = ∑i,j,k h(ijk)~2( λi+ nH) ·( ...The pinching of n-dimensional closed hypersurface Mwith constant mean curvature H in unit sphere S^(n+1)( 1) is considered. Let A = ∑i,j,k h(ijk)~2( λi+ nH)~2,B = ∑i,j,k h(ijk)~2( λi+ nH) ·( λj+ nH),S = ∑i( λi+ nH)~2, where h(ij)= λiδ(ij). Utilizing Lagrange's method, a sharper pointwise estimation of 3(A- 2B) in terms of S and |▽h|~2 is obtained, here |▽h|~2= ∑i,j,k h(ijk)~2. Then, with the help of this, it is proved that Mis isometric to the Clifford hypersurface if the square norm of the second fundamental form of Msatisfies certain conditions. Hence, the pinching result of the minimal hypersurface is extended to the hypersurface with constant mean curvature case.展开更多
In this article, we prove that any complete finite index hypersurface in the hyperbolic space H4(-1)(H5(-1)) with constant mean curvature H satisfying H2 6634 (H2 114785 respectively) must be compact. Speciall...In this article, we prove that any complete finite index hypersurface in the hyperbolic space H4(-1)(H5(-1)) with constant mean curvature H satisfying H2 6634 (H2 114785 respectively) must be compact. Specially, we verify that any complete and stable hypersurface in the hyperbolic space H4(-1) (resp. H5(-1)) with constant mean curvature H satisfying H2 6643 (resp. H2 114785 ) must be compact. It shows that there is no manifold satisfying the conditions of some theorems in [7, 9].展开更多
In this paper, we establish a rigidity theorem for compact constant mean curva- ture surfaces of the Berger sphere in terms of the surfaces' geometric invariants. This extends the previous similar result on compact m...In this paper, we establish a rigidity theorem for compact constant mean curva- ture surfaces of the Berger sphere in terms of the surfaces' geometric invariants. This extends the previous similar result on compact minimal surfaces of the Berger sphere.展开更多
Let M^n be an n-dimensional complete noncompact oriented weakly stable constant mean curvature hypersurface in an (n + 1)-dimensional Riemannian manifold N^n+1 whose (n - 1)th Ricci curvature satisfying Ric^N(...Let M^n be an n-dimensional complete noncompact oriented weakly stable constant mean curvature hypersurface in an (n + 1)-dimensional Riemannian manifold N^n+1 whose (n - 1)th Ricci curvature satisfying Ric^N(n-1) (n - 1)c. Denote by H and φ the mean curvature and the trace-free second fundamental form of M respectively. If |φ|^2 - (n- 2)√n(n- 1)|H||φ|+ n(2n - 1)(H^2+ c) 〉 0, then M does not admit nonconstant bounded harmonic functions with finite Dirichlet integral. In particular, if N has bounded geometry and c + H^2 〉 0, then M must have only one end.展开更多
Let M be a compact hypersurface with constant mean curvature in Denote by H and S the mean curvature and the squared norm of the second fundamental form of M,respectively.We verify that there exists a positive constan...Let M be a compact hypersurface with constant mean curvature in Denote by H and S the mean curvature and the squared norm of the second fundamental form of M,respectively.We verify that there exists a positive constantγ(n)depending only on n such that if|H|≤γ(n)andβ(n,H)≤S≤β(n,H)+n/18,then S≡β(n,H)and M is a Clifford torus.Here,β(n,H)=n+n^(3)/2(n-1)H^(2)+n(n-2)/2(n-1)(1/2)n^(2)H^(4)+4(n-1)H^(2).展开更多
By using curvature estimates, we prove that a complete non-compact hypersurface M with constant mean curvature and finite L^n-norm curvature in R^1+1 must be minimal, so that M is a hyperplane if it is strongly stabl...By using curvature estimates, we prove that a complete non-compact hypersurface M with constant mean curvature and finite L^n-norm curvature in R^1+1 must be minimal, so that M is a hyperplane if it is strongly stable. This is a generalization of the result on stable complete minimal hypersurfaces of R^n+1. Moreover, complete strongly stable hypersurfaces with constant mean curvature and finite L^1-norm curvature in R^1+1 are considered.展开更多
Let M be a compact minimal surface in S<sup>3</sup>.Y.J.Hsu proved that if ‖S‖<sub>2</sub>≤2(2<sup>1/2</sup>π, then M is either the equatorial sphere or the Clifford torus,where...Let M be a compact minimal surface in S<sup>3</sup>.Y.J.Hsu proved that if ‖S‖<sub>2</sub>≤2(2<sup>1/2</sup>π, then M is either the equatorial sphere or the Clifford torus,where 5" is the square of the length of the second fundamental form of M,‖·‖<sub>2</sub> denotes the L<sup>2</sup>-norm on M.In this paper,we generalize Hsu’s result to any compact surfaces in S<sup>3</sup> with constant mean curvature.展开更多
In this paper,we investigate spacelike graphs defined over a domain Ω⊂M^(n) in the Lorentz manifold M^(n)×ℝ with the metric−ds^(2)+σ,where M^(n) is a complete Riemannian n-manifold with the metricσ,Ωhas piece...In this paper,we investigate spacelike graphs defined over a domain Ω⊂M^(n) in the Lorentz manifold M^(n)×ℝ with the metric−ds^(2)+σ,where M^(n) is a complete Riemannian n-manifold with the metricσ,Ωhas piecewise smooth boundary,and ℝ denotes the Euclidean 1-space.We prove an interesting stability result for translating spacelike graphs in M^(n)×ℝ under a conformal transformation.展开更多
Motivated by the theory of isoparametric hypersurfaces,we study submanifolds whose tubular hypersurfaces have some constant higher order mean curvatures.Here a k-th order mean curvature Q_k^v(k ≥ 1) of a submanifol...Motivated by the theory of isoparametric hypersurfaces,we study submanifolds whose tubular hypersurfaces have some constant higher order mean curvatures.Here a k-th order mean curvature Q_k^v(k ≥ 1) of a submanifold M^n-is defined as the k-th power sum of the principal curvatures,or equivalently,of the shape operator with respect to the unit normal vector v.We show that if all nearby tubular hypersurfaces of M have some constant higher order mean curvatures,then the submanifold M itself has some constant higher order mean curvatures Q_k^v independent of the choice of v.Many identities involving higher order mean curvatures and Jacobi operators on such submanifolds are also obtained.In particular,we generalize several classical results in isoparametric theory given by E.Cartan,K.Nomizu,H.F.Miinzner,Q.M.Wang,et al.As an application,we finally get a geometrical filtration for the focal submanifolds of isoparametric functions on a complete Riemannian manifold.展开更多
The purpose of this paper is to study complete space-like submanifolds with parallel mean curvature vector and flat normal bundle in a locally symmetric semi-defnite space satisfying some curvature conditions. We firs...The purpose of this paper is to study complete space-like submanifolds with parallel mean curvature vector and flat normal bundle in a locally symmetric semi-defnite space satisfying some curvature conditions. We first give an optimal estimate of the Laplacian of the squared norm of the second fundamental form for such submanifold. Furthermore, the totally umbilical submanifolds are characterized.展开更多
In this paper we obtain some formulas for totally umbilical submanifolds in a localiy symmetric manifold, and dcrivc some local rcsults on the submanifolds from these formulas.
In this paper, we give a complete conformal classification of the regular space-like hyper- surfaces in the de Sitter Space S~+1 with parallel para-Blaschke tensors.
In this paper we study surfaces in S^4 and their twistor Gauss maps.Some necessary and sufficient conditions that the twistor Gauss map is harmonic are given.We find many examples of nonisotropic harmonic maps from a ...In this paper we study surfaces in S^4 and their twistor Gauss maps.Some necessary and sufficient conditions that the twistor Gauss map is harmonic are given.We find many examples of nonisotropic harmonic maps from a surface to(?)P^3.展开更多
In this paper,we consider the hypersurfaces of Randers space with constant flag curvature.(1)Let(M^n+1,F)be a Randers–Minkowski space.If(M^n,F)is a hypersurface of(M^n+1,F)with constant flag curvature K=1,then we can...In this paper,we consider the hypersurfaces of Randers space with constant flag curvature.(1)Let(M^n+1,F)be a Randers–Minkowski space.If(M^n,F)is a hypersurface of(M^n+1,F)with constant flag curvature K=1,then we can prove that M is Riemannian.(2)Let(M^n+1,F)be a Randers space with constant flag curvature.Assume(M,F)is a compact hypersurface of(M^n+1,F)with constant mean curvature|H|.Then a pinching theorem is established,which generalizes the result of[Proc.Amer.Math.Soc.,120,1223–1229(1994)]from the Riemannian case to the Randers space.展开更多
文摘The pinching of n-dimensional closed hypersurface Mwith constant mean curvature H in unit sphere S^(n+1)( 1) is considered. Let A = ∑i,j,k h(ijk)~2( λi+ nH)~2,B = ∑i,j,k h(ijk)~2( λi+ nH) ·( λj+ nH),S = ∑i( λi+ nH)~2, where h(ij)= λiδ(ij). Utilizing Lagrange's method, a sharper pointwise estimation of 3(A- 2B) in terms of S and |▽h|~2 is obtained, here |▽h|~2= ∑i,j,k h(ijk)~2. Then, with the help of this, it is proved that Mis isometric to the Clifford hypersurface if the square norm of the second fundamental form of Msatisfies certain conditions. Hence, the pinching result of the minimal hypersurface is extended to the hypersurface with constant mean curvature case.
基金supported by NSFC (10901067)partially supported by NSFC (10801058) and Hubei Key Laboratory of Mathematical Sciences
文摘In this article, we prove that any complete finite index hypersurface in the hyperbolic space H4(-1)(H5(-1)) with constant mean curvature H satisfying H2 6634 (H2 114785 respectively) must be compact. Specially, we verify that any complete and stable hypersurface in the hyperbolic space H4(-1) (resp. H5(-1)) with constant mean curvature H satisfying H2 6643 (resp. H2 114785 ) must be compact. It shows that there is no manifold satisfying the conditions of some theorems in [7, 9].
文摘In this paper, we establish a rigidity theorem for compact constant mean curva- ture surfaces of the Berger sphere in terms of the surfaces' geometric invariants. This extends the previous similar result on compact minimal surfaces of the Berger sphere.
基金Supported by the National Natural Science Foundation of China (10771187 10671087)+1 种基金Trans-Century Training Programme Foundation for Talents by the Ministry of Education of ChinaJiangxi Province Natural Science Foundation (2008GZS0060)
文摘Let M^n be an n-dimensional complete noncompact oriented weakly stable constant mean curvature hypersurface in an (n + 1)-dimensional Riemannian manifold N^n+1 whose (n - 1)th Ricci curvature satisfying Ric^N(n-1) (n - 1)c. Denote by H and φ the mean curvature and the trace-free second fundamental form of M respectively. If |φ|^2 - (n- 2)√n(n- 1)|H||φ|+ n(2n - 1)(H^2+ c) 〉 0, then M does not admit nonconstant bounded harmonic functions with finite Dirichlet integral. In particular, if N has bounded geometry and c + H^2 〉 0, then M must have only one end.
基金supported by National Natural Science Foundation of China(Grant No.11531012)China Postdoctoral Science Foundation(Grant No.BX20180274)Natural Science Foundation of Zhejiang Province(Grant No.LY20A010024)。
文摘Let M be a compact hypersurface with constant mean curvature in Denote by H and S the mean curvature and the squared norm of the second fundamental form of M,respectively.We verify that there exists a positive constantγ(n)depending only on n such that if|H|≤γ(n)andβ(n,H)≤S≤β(n,H)+n/18,then S≡β(n,H)and M is a Clifford torus.Here,β(n,H)=n+n^(3)/2(n-1)H^(2)+n(n-2)/2(n-1)(1/2)n^(2)H^(4)+4(n-1)H^(2).
基金The first author is partially supported by the National Natural Science Foundation of China (No.10271106)The second author is partially supported by the 973-Grant of Mathematics in China and the Huo Y.-D. fund.
文摘By using curvature estimates, we prove that a complete non-compact hypersurface M with constant mean curvature and finite L^n-norm curvature in R^1+1 must be minimal, so that M is a hyperplane if it is strongly stable. This is a generalization of the result on stable complete minimal hypersurfaces of R^n+1. Moreover, complete strongly stable hypersurfaces with constant mean curvature and finite L^1-norm curvature in R^1+1 are considered.
文摘Let M be a compact minimal surface in S<sup>3</sup>.Y.J.Hsu proved that if ‖S‖<sub>2</sub>≤2(2<sup>1/2</sup>π, then M is either the equatorial sphere or the Clifford torus,where 5" is the square of the length of the second fundamental form of M,‖·‖<sub>2</sub> denotes the L<sup>2</sup>-norm on M.In this paper,we generalize Hsu’s result to any compact surfaces in S<sup>3</sup> with constant mean curvature.
基金supported in part by the NSFC(11801496,11926352)the Fok Ying-Tung Education Foundation(China)the Hubei Key Laboratory of Applied Mathematics(Hubei University).
文摘In this paper,we investigate spacelike graphs defined over a domain Ω⊂M^(n) in the Lorentz manifold M^(n)×ℝ with the metric−ds^(2)+σ,where M^(n) is a complete Riemannian n-manifold with the metricσ,Ωhas piecewise smooth boundary,and ℝ denotes the Euclidean 1-space.We prove an interesting stability result for translating spacelike graphs in M^(n)×ℝ under a conformal transformation.
基金partially supported by NSFC(Grant No.11331002)the Fundamental Research Funds for the Central Universities
文摘Motivated by the theory of isoparametric hypersurfaces,we study submanifolds whose tubular hypersurfaces have some constant higher order mean curvatures.Here a k-th order mean curvature Q_k^v(k ≥ 1) of a submanifold M^n-is defined as the k-th power sum of the principal curvatures,or equivalently,of the shape operator with respect to the unit normal vector v.We show that if all nearby tubular hypersurfaces of M have some constant higher order mean curvatures,then the submanifold M itself has some constant higher order mean curvatures Q_k^v independent of the choice of v.Many identities involving higher order mean curvatures and Jacobi operators on such submanifolds are also obtained.In particular,we generalize several classical results in isoparametric theory given by E.Cartan,K.Nomizu,H.F.Miinzner,Q.M.Wang,et al.As an application,we finally get a geometrical filtration for the focal submanifolds of isoparametric functions on a complete Riemannian manifold.
文摘The purpose of this paper is to study complete space-like submanifolds with parallel mean curvature vector and flat normal bundle in a locally symmetric semi-defnite space satisfying some curvature conditions. We first give an optimal estimate of the Laplacian of the squared norm of the second fundamental form for such submanifold. Furthermore, the totally umbilical submanifolds are characterized.
文摘In this paper we obtain some formulas for totally umbilical submanifolds in a localiy symmetric manifold, and dcrivc some local rcsults on the submanifolds from these formulas.
基金Supported by Foundation of Natural Sciences of China(Grant Nos.11671121,11171091 and 11371018)
文摘In this paper, we give a complete conformal classification of the regular space-like hyper- surfaces in the de Sitter Space S~+1 with parallel para-Blaschke tensors.
基金Supported by the National Natural Science Foundation of China and the Science Foundation of Zhejiang Province.
文摘In this paper we study surfaces in S^4 and their twistor Gauss maps.Some necessary and sufficient conditions that the twistor Gauss map is harmonic are given.We find many examples of nonisotropic harmonic maps from a surface to(?)P^3.
基金the National Natural Science Foundation of China(Grant No.11871405)。
文摘In this paper,we consider the hypersurfaces of Randers space with constant flag curvature.(1)Let(M^n+1,F)be a Randers–Minkowski space.If(M^n,F)is a hypersurface of(M^n+1,F)with constant flag curvature K=1,then we can prove that M is Riemannian.(2)Let(M^n+1,F)be a Randers space with constant flag curvature.Assume(M,F)is a compact hypersurface of(M^n+1,F)with constant mean curvature|H|.Then a pinching theorem is established,which generalizes the result of[Proc.Amer.Math.Soc.,120,1223–1229(1994)]from the Riemannian case to the Randers space.