The increasing demands on safety, emission and fuel consumption require more accurate control models of micro internal combustion swing engine (MICSE). The objective of this paper is to investigate the constant spee...The increasing demands on safety, emission and fuel consumption require more accurate control models of micro internal combustion swing engine (MICSE). The objective of this paper is to investigate the constant speed control models of four-stroke MICSE The operation principle of the four-stroke MICSE is presented based on the description of MICSE prototype. A two-level Petri net based hybrid mode/ is proposed to mode/ the four-stroke MICSE engine cycle. The Petri net subsystem at the upper level controls and synchronizes the four Petri net subsystems at the lower level. The continuous sub-models, including breathing dynamics of intake manifold, thermodynamics of the chamber and dynamics of the torque generation, are investigated and integrated with the discrete model in MATLAB Simulink. Through the comparison of experimental data and simulated DC voltage output, it is demonstrated that the hybrid model is valid for the four-stroke MICSE system. A nonlinear model is obtained from the cycle average data via the regression method, and it is linearized around a given nominal equilibrium point for the controller design. The feedback controller of the spark timing and valve duration timing is designed with a sequential loop closing design approach. The simulation of the sequential loop closure control design applied to the hybrid model is implemented in MATLAB. The simulation results show that the system is able to reach its desired operating point within 0.2 s, and the designed controller shows good MICSE engine performance with a constant speed. This paper presents the constant speed control models of four-stroke MICSE and carries out the simulation tests, the models and the simulation results can be used for further study on the precision control of four-stroke MICSE.展开更多
The traditional large electroslag remelting furnaces have many shortages,such as high short-network impedance and inductance,long maintenance time for electrode replacement,low stiffness of driveline,and low control a...The traditional large electroslag remelting furnaces have many shortages,such as high short-network impedance and inductance,long maintenance time for electrode replacement,low stiffness of driveline,and low control accuracy of remelting speed.The present research was aimed to solve these problems through structure modification and constant remelting speed control for a 120-t electroslag remelting(ESR) furnace.Based on the technique of three-phase double electrodes in series,the short-network system and the structure of the 120-t ESR furnace were improved;and a continuous feeding system for the self-consumption electrode was proposed.A selfdesigned fully hydraulic driveline system with three degrees of freedom was successfully applied to the 120-t ESR furnace.An electrode auto-replacement system and the S-style speed-control curve of electrode-feeding system were designed on the basis of the soft measurement/sensing model on the remaining electrode length so as to obtain a high accuracy control system for constant remelting speed.The experiment products showed good surface quality and cross-sectional results,indicating good system control,and verifying the effectiveness of the structure modification of the furnace.展开更多
Based on the characteristic of AC-excited variable speed constant frequency(VSCF)wind power generation,the vector control technique was applied in a doubly fed induction generator(DFIG).Maximum wind energy or maximum ...Based on the characteristic of AC-excited variable speed constant frequency(VSCF)wind power generation,the vector control technique was applied in a doubly fed induction generator(DFIG).Maximum wind energy or maximum output power point can be tracked by decoupling control of active power and reactive power.The research result shows that the net power of generation system delivered to grid in maximum wind energy tracking mode is not the most.We presented a novel maximum power point tracking(MPPT)control strategy by analyzing the DFIG mathematic model and power relations which delivered the maximum power to the grid.The maximum power point could be tracked automatically without measuring wind speed in the control strategy and the control was independent of optimal turbine power curve,which had excellent dynamic and static performances and robustness.Simulation and experimental results testify the accuracy and validity of the control strategy.展开更多
In general,Variable-Speed Constant Frequency (VSCF)Wind generation system is controlled by stator voltage orientation method which based on the mathematic model of VSCF Wind generation system and discussed the control...In general,Variable-Speed Constant Frequency (VSCF)Wind generation system is controlled by stator voltage orientation method which based on the mathematic model of VSCF Wind generation system and discussed the control strategy.Present the whole dynamic control model of variable-speed wind generator system in MATLAB/ Simulink,and the simulation results confirm the validity and effectiveness of the proposed control strategy.展开更多
We previously revealed a quantitative relation by which the fine-structure constant α can be described by the temperature T of cosmic microwave background (CMB) with several other fundamental constants, including the...We previously revealed a quantitative relation by which the fine-structure constant α can be described by the temperature T of cosmic microwave background (CMB) with several other fundamental constants, including the elementary charge e, the Boltzmann constant k, the Planck constant h, and the light of speed in vacuum c. Given that the value of α is quite conserved but T is variable across CMBs, we propose that c changes with T and can be given by T, the present CMB temperature T<sub>0</sub> and the present light speed c<sub>0</sub>. As T is continuously decreasing, c is thus predicted to decrease at a rate of ~2.15 centimeters/second (cm/s) per year. Moreover, we provide a lot of evidence to support this finding. In conclusion, this study suggests a possibility of variable speed of light in vacuum.展开更多
In urban flood modeling,so-called porosity shallow water equations(PSWEs),which conceptually account for unresolved structures, e.g.,buildings, are a promising approach to addressing high CPU times associated with sta...In urban flood modeling,so-called porosity shallow water equations(PSWEs),which conceptually account for unresolved structures, e.g.,buildings, are a promising approach to addressing high CPU times associated with state-of-the-art explicit numerical methods. The PSWE can be formulated with a single porosity term, referred to as the single porosity shallow water model(SP model), which accounts for both the reduced storage in the cell and the reduced conveyance, or with two porosity terms: one accounting for the reduced storage in the cell and another accounting for the reduced conveyance. The latter form is referred to as an integral or anisotropic porosity shallow water model(AP model). The aim of this study was to analyze the differences in wave propagation speeds of the SP model and the AP model and the implications of numerical model results. First, augmented Roe-type solutions were used to assess the influence of the source terms appearing in both models. It is shown that different source terms have different influences on the stability of the models. Second, four computational test cases were presented and the numerical models were compared. It is observed in the eigenvalue-based analysis as well as in the computational test cases that the models converge if the conveyance porosity in the AP model is close to the storage porosity. If the porosity values differ significantly, the AP model yields different wave propagation speeds and numerical fluxes from those of the BP model. In this study, the ratio between the conveyance and storage porosities was determined to be the most significant parameter.展开更多
In this paper, a mathematical relation was found between interatomic Hooke’s force constant and both the bulk modulus and interatomic distance in solid crystals, considering that the forces which have effect on an at...In this paper, a mathematical relation was found between interatomic Hooke’s force constant and both the bulk modulus and interatomic distance in solid crystals, considering that the forces which have effect on an atom are only those resulted from the neighboring atoms, and the forces are subject to Hooke’s law as the deflections of atoms from their equilibrium positions are very small. This work has been applied on some solid semiconducting crystals of diatomic primitive cell, including crystals of mono-atomic primitive cell automatically, by using linear statistical fitting with computer programming and, then, using mathematical analysis, proceeding from the vibrational dispersion relation of solid linear lattice, these two methods have been used in the process in order to support each other and for the result to be satisfying and reasonable. This is a contribution to the process of using computer programming in physics to facilitate mathematical analyses and obtain the required relations and functions by designing and developing appropriate computer programs in line with the macro and micro natures of materials. The importance of this is in enhancing our understanding of the interatomic actions in cells and of the crystal structure of materials in general and semiconductors in particular, as it is a step of the initial steps to facilitate the process of calculating energies and extracting mathematical relations between correlation energy and temperature as well as between sub-fusion and fusion energies with temperature.展开更多
Every four years the Committee on Data for Science and Technology (CODATA) supplies a self-consistent set of values of the basic constants and conversion factors of physics recommended for international use. In 2013, ...Every four years the Committee on Data for Science and Technology (CODATA) supplies a self-consistent set of values of the basic constants and conversion factors of physics recommended for international use. In 2013, the World-Universe Model (WUM) proposed a principally different depiction of the World as an alternative to the picture of the Big Bang Model. This article: 1) Gives the short history of Classical Physics before Special Relativity;2) Calculates Fundamental Physical Constants based on experimentally measured Rydberg constant, Electrodynamic constant, Electron Charge-to-Mass Ratio, and Planck constant;3) Discusses Electrodynamic constant and Speed of Light;4) Considers Dimensionless Fundamental Parameters (Dirac Large Number Q and Dimensionless Rydberg Constant α);5) Calculates Newtonian Constant of Gravitation based on the Inter-connectivity of Primary Physical Parameters;6) Makes a detailed analysis of the Self-consistency of Fundamental Physical Constants and Primary Physical Parameters through the prism of WUM. The performed analysis suggests: 1) Discontinuing using the notion “Vacuum” and its characteristics (Speed of Light in Vacuum, Characteristic Impedance of Vacuum, Vacuum Magnetic Permeability, Vacuum Electric Permittivity);2) Accepting the exact numerical values of Electrodynamic constant, Planck constant, Elementary charge, and Dimensionless Rydberg Constant α. WUM recommends the predicted value of Newtonian Constant of Gravitation in 2018 to be considered in CODATA Recommend Values of the Fundamental Physical Constants 2022.展开更多
The recent finding that gravitational waves (GW170817) traveled at the same speed as electromagnetic (EM) waves (GRB 170817A) from a binary neutron star merger does not necessarily mean that they traveled throughout t...The recent finding that gravitational waves (GW170817) traveled at the same speed as electromagnetic (EM) waves (GRB 170817A) from a binary neutron star merger does not necessarily mean that they traveled throughout their journey at speed c. Some recent works by the author (2015) Journal of Modern Physics, 6, 78-87, and 1360-1370;(2016), 7, 1829-1844;(2017), 8, 622-635 show that the diminished brightness of Type Ia supernovae (SNe Ia) can be explained by assuming that dark energy, instead of having a negative pressure, has an index of refraction n, causing the speed of light through intergalactic space (IGS) to be reduced to c/n, with? n≈1.5. It follows that GWs (not considered in the previous works) would also travel with speed c/n through IGS. However, speed of GWs and EMWs within galaxies themselves is c. A brief review of the model is given, together with other predictions, e.g., new values for the Hubble constant and age of the universe, and necessary absence of correlation of neutrinos with gamma ray bursts (GRBs), in agreement with numerous searches. In the previous works, there were implications of a unified theory. If the model holds, since GWs would experience the same speed reduction as EMWs, this would further support unification. An improved falsification methodology for a previously proposed astronomical test based on discordant redshifts is given.展开更多
We previously revealed that the speed of light in vacuum c, the gravitational constant G, the vacuum permittivity ε, and the vacuum permeability μ can be defined by the temperature T (or the expected average frequen...We previously revealed that the speed of light in vacuum c, the gravitational constant G, the vacuum permittivity ε, and the vacuum permeability μ can be defined by the temperature T (or the expected average frequency f) of cosmic microwave background (CMB) radiation. Given that CMB is continuously cooling, that is, T is continuously decreasing, we proposed that the above “constants” are variable and their values at some space-time with CMB temperature T (c<sub>T</sub>, G<sub>T</sub>, ε<sub>T</sub>, and μ<sub>T</sub>) can be described using their values (c<sub>0</sub>, G<sub>0</sub>, ε<sub>0</sub>, and μ<sub>0</sub>) and the temperature (T<sub>0</sub>) of CMB at present space-time. Based on the above observation, a number of physical equations related with these constants are re-described in this study, including relativity equation, mass-energy equation, and Maxwell’s equations, etc.展开更多
For offshore hydraulic drive wind turbines,the problems of unsatisfactory speed control and low efficiency at low wind speeds are targeted.A low-speed high-torque radial piston pump is designed to replace the traditio...For offshore hydraulic drive wind turbines,the problems of unsatisfactory speed control and low efficiency at low wind speeds are targeted.A low-speed high-torque radial piston pump is designed to replace the traditional fixed pump with a particular focus on its low-speed performance.The pump is characterized by small internal leakage at low wind speeds and high volumetric efficiency,which is beneficial to improve the power generation efficiency of the system.A new linear control method based on the PID algorithm and feedforward compensation was proposed to obtain the constant speed output control of variable motor at low wind speed.With the model for wind turbine and fixed pump-variable motor main drive system,the system was simulated and experimentally proved to verify the feasibility and anti-interference performance of the system control method at low wind speeds.A promising outcome was obtained on the response characteristics of system power and efficiency at low wind speeds.This can be a powerful technical support for the normal ustility of hydraulic drive wind turbines.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51475422)Science Fund for Creative Research Groups of National Natural Science Foundation of China(Grant No.51221004)
文摘The increasing demands on safety, emission and fuel consumption require more accurate control models of micro internal combustion swing engine (MICSE). The objective of this paper is to investigate the constant speed control models of four-stroke MICSE The operation principle of the four-stroke MICSE is presented based on the description of MICSE prototype. A two-level Petri net based hybrid mode/ is proposed to mode/ the four-stroke MICSE engine cycle. The Petri net subsystem at the upper level controls and synchronizes the four Petri net subsystems at the lower level. The continuous sub-models, including breathing dynamics of intake manifold, thermodynamics of the chamber and dynamics of the torque generation, are investigated and integrated with the discrete model in MATLAB Simulink. Through the comparison of experimental data and simulated DC voltage output, it is demonstrated that the hybrid model is valid for the four-stroke MICSE system. A nonlinear model is obtained from the cycle average data via the regression method, and it is linearized around a given nominal equilibrium point for the controller design. The feedback controller of the spark timing and valve duration timing is designed with a sequential loop closing design approach. The simulation of the sequential loop closure control design applied to the hybrid model is implemented in MATLAB. The simulation results show that the system is able to reach its desired operating point within 0.2 s, and the designed controller shows good MICSE engine performance with a constant speed. This paper presents the constant speed control models of four-stroke MICSE and carries out the simulation tests, the models and the simulation results can be used for further study on the precision control of four-stroke MICSE.
基金financially supported by the National Science and Technology Major Project of the Eleventh Five-Year Plan of China(2009ZX04006-032)
文摘The traditional large electroslag remelting furnaces have many shortages,such as high short-network impedance and inductance,long maintenance time for electrode replacement,low stiffness of driveline,and low control accuracy of remelting speed.The present research was aimed to solve these problems through structure modification and constant remelting speed control for a 120-t electroslag remelting(ESR) furnace.Based on the technique of three-phase double electrodes in series,the short-network system and the structure of the 120-t ESR furnace were improved;and a continuous feeding system for the self-consumption electrode was proposed.A selfdesigned fully hydraulic driveline system with three degrees of freedom was successfully applied to the 120-t ESR furnace.An electrode auto-replacement system and the S-style speed-control curve of electrode-feeding system were designed on the basis of the soft measurement/sensing model on the remaining electrode length so as to obtain a high accuracy control system for constant remelting speed.The experiment products showed good surface quality and cross-sectional results,indicating good system control,and verifying the effectiveness of the structure modification of the furnace.
基金Funded by the National Natural Science Foundation of China(No.60974049)the Science and Technology Support Industrial Project of Jiangsu Province(No.BZ2008031,No.BE2008074,and No.BE2009090)+1 种基金the Nantong International Cooperative Project(No.W2009003)the Natural Science Foundation of Nantong University(No.08Z022 and No.08Z025).
文摘Based on the characteristic of AC-excited variable speed constant frequency(VSCF)wind power generation,the vector control technique was applied in a doubly fed induction generator(DFIG).Maximum wind energy or maximum output power point can be tracked by decoupling control of active power and reactive power.The research result shows that the net power of generation system delivered to grid in maximum wind energy tracking mode is not the most.We presented a novel maximum power point tracking(MPPT)control strategy by analyzing the DFIG mathematic model and power relations which delivered the maximum power to the grid.The maximum power point could be tracked automatically without measuring wind speed in the control strategy and the control was independent of optimal turbine power curve,which had excellent dynamic and static performances and robustness.Simulation and experimental results testify the accuracy and validity of the control strategy.
文摘In general,Variable-Speed Constant Frequency (VSCF)Wind generation system is controlled by stator voltage orientation method which based on the mathematic model of VSCF Wind generation system and discussed the control strategy.Present the whole dynamic control model of variable-speed wind generator system in MATLAB/ Simulink,and the simulation results confirm the validity and effectiveness of the proposed control strategy.
文摘We previously revealed a quantitative relation by which the fine-structure constant α can be described by the temperature T of cosmic microwave background (CMB) with several other fundamental constants, including the elementary charge e, the Boltzmann constant k, the Planck constant h, and the light of speed in vacuum c. Given that the value of α is quite conserved but T is variable across CMBs, we propose that c changes with T and can be given by T, the present CMB temperature T<sub>0</sub> and the present light speed c<sub>0</sub>. As T is continuously decreasing, c is thus predicted to decrease at a rate of ~2.15 centimeters/second (cm/s) per year. Moreover, we provide a lot of evidence to support this finding. In conclusion, this study suggests a possibility of variable speed of light in vacuum.
文摘In urban flood modeling,so-called porosity shallow water equations(PSWEs),which conceptually account for unresolved structures, e.g.,buildings, are a promising approach to addressing high CPU times associated with state-of-the-art explicit numerical methods. The PSWE can be formulated with a single porosity term, referred to as the single porosity shallow water model(SP model), which accounts for both the reduced storage in the cell and the reduced conveyance, or with two porosity terms: one accounting for the reduced storage in the cell and another accounting for the reduced conveyance. The latter form is referred to as an integral or anisotropic porosity shallow water model(AP model). The aim of this study was to analyze the differences in wave propagation speeds of the SP model and the AP model and the implications of numerical model results. First, augmented Roe-type solutions were used to assess the influence of the source terms appearing in both models. It is shown that different source terms have different influences on the stability of the models. Second, four computational test cases were presented and the numerical models were compared. It is observed in the eigenvalue-based analysis as well as in the computational test cases that the models converge if the conveyance porosity in the AP model is close to the storage porosity. If the porosity values differ significantly, the AP model yields different wave propagation speeds and numerical fluxes from those of the BP model. In this study, the ratio between the conveyance and storage porosities was determined to be the most significant parameter.
文摘In this paper, a mathematical relation was found between interatomic Hooke’s force constant and both the bulk modulus and interatomic distance in solid crystals, considering that the forces which have effect on an atom are only those resulted from the neighboring atoms, and the forces are subject to Hooke’s law as the deflections of atoms from their equilibrium positions are very small. This work has been applied on some solid semiconducting crystals of diatomic primitive cell, including crystals of mono-atomic primitive cell automatically, by using linear statistical fitting with computer programming and, then, using mathematical analysis, proceeding from the vibrational dispersion relation of solid linear lattice, these two methods have been used in the process in order to support each other and for the result to be satisfying and reasonable. This is a contribution to the process of using computer programming in physics to facilitate mathematical analyses and obtain the required relations and functions by designing and developing appropriate computer programs in line with the macro and micro natures of materials. The importance of this is in enhancing our understanding of the interatomic actions in cells and of the crystal structure of materials in general and semiconductors in particular, as it is a step of the initial steps to facilitate the process of calculating energies and extracting mathematical relations between correlation energy and temperature as well as between sub-fusion and fusion energies with temperature.
文摘Every four years the Committee on Data for Science and Technology (CODATA) supplies a self-consistent set of values of the basic constants and conversion factors of physics recommended for international use. In 2013, the World-Universe Model (WUM) proposed a principally different depiction of the World as an alternative to the picture of the Big Bang Model. This article: 1) Gives the short history of Classical Physics before Special Relativity;2) Calculates Fundamental Physical Constants based on experimentally measured Rydberg constant, Electrodynamic constant, Electron Charge-to-Mass Ratio, and Planck constant;3) Discusses Electrodynamic constant and Speed of Light;4) Considers Dimensionless Fundamental Parameters (Dirac Large Number Q and Dimensionless Rydberg Constant α);5) Calculates Newtonian Constant of Gravitation based on the Inter-connectivity of Primary Physical Parameters;6) Makes a detailed analysis of the Self-consistency of Fundamental Physical Constants and Primary Physical Parameters through the prism of WUM. The performed analysis suggests: 1) Discontinuing using the notion “Vacuum” and its characteristics (Speed of Light in Vacuum, Characteristic Impedance of Vacuum, Vacuum Magnetic Permeability, Vacuum Electric Permittivity);2) Accepting the exact numerical values of Electrodynamic constant, Planck constant, Elementary charge, and Dimensionless Rydberg Constant α. WUM recommends the predicted value of Newtonian Constant of Gravitation in 2018 to be considered in CODATA Recommend Values of the Fundamental Physical Constants 2022.
文摘The recent finding that gravitational waves (GW170817) traveled at the same speed as electromagnetic (EM) waves (GRB 170817A) from a binary neutron star merger does not necessarily mean that they traveled throughout their journey at speed c. Some recent works by the author (2015) Journal of Modern Physics, 6, 78-87, and 1360-1370;(2016), 7, 1829-1844;(2017), 8, 622-635 show that the diminished brightness of Type Ia supernovae (SNe Ia) can be explained by assuming that dark energy, instead of having a negative pressure, has an index of refraction n, causing the speed of light through intergalactic space (IGS) to be reduced to c/n, with? n≈1.5. It follows that GWs (not considered in the previous works) would also travel with speed c/n through IGS. However, speed of GWs and EMWs within galaxies themselves is c. A brief review of the model is given, together with other predictions, e.g., new values for the Hubble constant and age of the universe, and necessary absence of correlation of neutrinos with gamma ray bursts (GRBs), in agreement with numerous searches. In the previous works, there were implications of a unified theory. If the model holds, since GWs would experience the same speed reduction as EMWs, this would further support unification. An improved falsification methodology for a previously proposed astronomical test based on discordant redshifts is given.
文摘We previously revealed that the speed of light in vacuum c, the gravitational constant G, the vacuum permittivity ε, and the vacuum permeability μ can be defined by the temperature T (or the expected average frequency f) of cosmic microwave background (CMB) radiation. Given that CMB is continuously cooling, that is, T is continuously decreasing, we proposed that the above “constants” are variable and their values at some space-time with CMB temperature T (c<sub>T</sub>, G<sub>T</sub>, ε<sub>T</sub>, and μ<sub>T</sub>) can be described using their values (c<sub>0</sub>, G<sub>0</sub>, ε<sub>0</sub>, and μ<sub>0</sub>) and the temperature (T<sub>0</sub>) of CMB at present space-time. Based on the above observation, a number of physical equations related with these constants are re-described in this study, including relativity equation, mass-energy equation, and Maxwell’s equations, etc.
基金supported by Chongqing Natural Science Foundation(cstc2019jcyj⁃msxm2000),Chongqing University of Science and Technology Graduate Science and Technology Innovation Project(JXXY201901)。
文摘For offshore hydraulic drive wind turbines,the problems of unsatisfactory speed control and low efficiency at low wind speeds are targeted.A low-speed high-torque radial piston pump is designed to replace the traditional fixed pump with a particular focus on its low-speed performance.The pump is characterized by small internal leakage at low wind speeds and high volumetric efficiency,which is beneficial to improve the power generation efficiency of the system.A new linear control method based on the PID algorithm and feedforward compensation was proposed to obtain the constant speed output control of variable motor at low wind speed.With the model for wind turbine and fixed pump-variable motor main drive system,the system was simulated and experimentally proved to verify the feasibility and anti-interference performance of the system control method at low wind speeds.A promising outcome was obtained on the response characteristics of system power and efficiency at low wind speeds.This can be a powerful technical support for the normal ustility of hydraulic drive wind turbines.