In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However,...In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However, an overly finetuned strategy or technique might overfit some problem types,resulting in a lack of versatility. In this article, we propose a generic search strategy that performs an even search in a promising region. The promising region, determined by obtained feasible non-dominated solutions, possesses two general properties.First, the constrained Pareto front(CPF) is included in the promising region. Second, as the number of feasible solutions increases or the convergence performance(i.e., approximation to the CPF) of these solutions improves, the promising region shrinks. Then we develop a new strategy named even search,which utilizes the non-dominated solutions to accelerate convergence and escape from local optima, and the feasible solutions under a constraint relaxation condition to exploit and detect feasible regions. Finally, a diversity measure is adopted to make sure that the individuals in the population evenly cover the valuable areas in the promising region. Experimental results on 45 instances from four benchmark test suites and 14 real-world CMOPs have demonstrated that searching evenly in the promising region can achieve competitive performance and excellent versatility compared to 11 most state-of-the-art methods tailored for CMOPs.展开更多
There are three common types of predictability problems in weather and climate, which each involve different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the upper bound o...There are three common types of predictability problems in weather and climate, which each involve different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the upper bound of maximum prediction error, and the lower bound of maximum allowable initial error and parameter error. Highly effcient algorithms have been developed to solve the second optimization problem. And this optimization problem can be used in realistic models for weather and climate to study the upper bound of the maximum prediction error. Although a filtering strategy has been adopted to solve the other two problems, direct solutions are very time-consuming even for a very simple model, which therefore limits the applicability of these two predictability problems in realistic models. In this paper, a new strategy is designed to solve these problems, involving the use of the existing highly effcient algorithms for the second predictability problem in particular. Furthermore, a series of comparisons between the older filtering strategy and the new method are performed. It is demonstrated that the new strategy not only outputs the same results as the old one, but is also more computationally effcient. This would suggest that it is possible to study the predictability problems associated with these two nonlinear optimization problems in realistic forecast models of weather or climate.展开更多
A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO c...A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches.展开更多
The convergence analysis of a nonlinear Lagrange algorithm for solving nonlinear constrained optimization problems with both inequality and equality constraints is explored in detail. The estimates for the derivatives...The convergence analysis of a nonlinear Lagrange algorithm for solving nonlinear constrained optimization problems with both inequality and equality constraints is explored in detail. The estimates for the derivatives of the multiplier mapping and the solution mapping of the proposed algorithm are discussed via the technique of the singular value decomposition of matrix. Based on the estimates, the local convergence results and the rate of convergence of the algorithm are presented when the penalty parameter is less than a threshold under a set of suitable conditions on problem functions. Furthermore, the condition number of the Hessian of the nonlinear Lagrange function with respect to the decision variables is analyzed, which is closely related to efficiency of the algorithm. Finally, the preliminary numericM results for several typical test problems are reported.展开更多
To solve single-objective constrained optimization problems,a new population-based evolutionary algorithm with elite strategy(PEAES) is proposed with the concept of single and multi-objective optimization.Constrained ...To solve single-objective constrained optimization problems,a new population-based evolutionary algorithm with elite strategy(PEAES) is proposed with the concept of single and multi-objective optimization.Constrained functions are combined to be an objective function.During the evolutionary process,the current optimal solution is found and treated as the reference point to divide the population into three sub-populations:one feasible and two infeasible ones.Different evolutionary operations of single or multi-objective optimization are respectively performed in each sub-population with elite strategy.Thirteen famous benchmark functions are selected to evaluate the performance of PEAES in comparison of other three optimization methods.The results show the proposed method is valid in efficiency,precision and probability for solving single-objective constrained optimization problems.展开更多
In this paper, a new augmented Lagrangian penalty function for constrained optimization problems is studied. The dual properties of the augmented Lagrangian objective penalty function for constrained optimization prob...In this paper, a new augmented Lagrangian penalty function for constrained optimization problems is studied. The dual properties of the augmented Lagrangian objective penalty function for constrained optimization problems are proved. Under some conditions, the saddle point of the augmented Lagrangian objective penalty function satisfies the first-order Karush-Kuhn-Tucker (KKT) condition. Especially, when the KKT condition holds for convex programming its saddle point exists. Based on the augmented Lagrangian objective penalty function, an algorithm is developed for finding a global solution to an inequality constrained optimization problem and its global convergence is also proved under some conditions.展开更多
Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much at...Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much attention and wide applications,owing to its easy implementation and quick convergence.A hybrid cuckoo pattern search algorithm(HCPS) with feasibility-based rule is proposed for solving constrained numerical and engineering design optimization problems.This algorithm can combine the stochastic exploration of the cuckoo search algorithm and the exploitation capability of the pattern search method.Simulation and comparisons based on several well-known benchmark test functions and structural design optimization problems demonstrate the effectiveness,efficiency and robustness of the proposed HCPS algorithm.展开更多
In order to improve the distribution and convergence of constrained optimization algorithms,this paper proposes a constrained optimization algorithm based on double populations. Firstly the feasible solutions and infe...In order to improve the distribution and convergence of constrained optimization algorithms,this paper proposes a constrained optimization algorithm based on double populations. Firstly the feasible solutions and infeasible solutions are stored separately through two populations,which can avoid direct comparison between them. The usage of efficient information carried by the infeasible solutions will enlarge exploitation scope and strength diversity of populations. At the same time,adopting the presented concept of constraints domination to update the infeasible set may keep good variety of population and give consideration to convergence. Also the improved mutation operation is employed to further raise the diversity and convergence.The suggested algorithm is compared with 3 state- of- the- art constrained optimization algorithms on standard test problems g01- g13. Simulation results show that the presented algorithm has certain advantages than other algorithms because it can ensure good convergence accuracy while it has good robustness.展开更多
In this paper we report a sparse truncated Newton algorithm for handling large-scale simple bound nonlinear constrained minimixation problem. The truncated Newton method is used to update the variables with indices ou...In this paper we report a sparse truncated Newton algorithm for handling large-scale simple bound nonlinear constrained minimixation problem. The truncated Newton method is used to update the variables with indices outside of the active set, while the projected gradient method is used to update the active variables. At each iterative level, the search direction consists of three parts, one of which is a subspace truncated Newton direction, the other two are subspace gradient and modified gradient directions. The subspace truncated Newton direction is obtained by solving a sparse system of linear equations. The global convergence and quadratic convergence rate of the algorithm are proved and some numerical tests are given.展开更多
This paper presents a trust region two phase model algorithm for solving the equality and bound constrained nonlinear optimization problem. A concept of substationary point is given. Under suitable assumptions,the gl...This paper presents a trust region two phase model algorithm for solving the equality and bound constrained nonlinear optimization problem. A concept of substationary point is given. Under suitable assumptions,the global convergence of this algorithm is proved without assuming the linear independence of the gradient of active constraints. A numerical example is also presented.展开更多
Iterative methods for solving discrete optimal control problems are constructed and investigated. These discrete problems arise when approximating by finite difference method or by finite element method the optimal co...Iterative methods for solving discrete optimal control problems are constructed and investigated. These discrete problems arise when approximating by finite difference method or by finite element method the optimal control problems which contain a linear elliptic boundary value problem as a state equation, control in the righthand side of the equation or in the boundary conditions, and point-wise constraints for both state and control functions. The convergence of the constructed iterative methods is proved, the implementation problems are discussed, and the numerical comparison of the methods is executed.展开更多
We consider a linear-quadratical optimal control problem of a system governed by parabolic equation with distributed in right-hand side control and control and state constraints. We construct a mesh approximation of t...We consider a linear-quadratical optimal control problem of a system governed by parabolic equation with distributed in right-hand side control and control and state constraints. We construct a mesh approximation of this problem using different two-level approximations of the state equation, ADI and fractional steps approximations in time among others. Iterative solution methods are investigated for all constructed approximations of the optimal control problem. Their implementation can be carried out in parallel manner.展开更多
This paper introduces a new exact and smooth penalty function to tackle constrained min-max problems. By using this new penalty function and adding just one extra variable, a constrained rain-max problem is transforme...This paper introduces a new exact and smooth penalty function to tackle constrained min-max problems. By using this new penalty function and adding just one extra variable, a constrained rain-max problem is transformed into an unconstrained optimization one. It is proved that, under certain reasonable assumptions and when the penalty parameter is sufficiently large, the minimizer of this unconstrained optimization problem is equivalent to the minimizer of the original constrained one. Numerical results demonstrate that this penalty function method is an effective and promising approach for solving constrained finite min-max problems.展开更多
This paper proposes a modified version of the Dwarf Mongoose Optimization Algorithm (IDMO) for constrained engineering design problems. This optimization technique modifies the base algorithm (DMO) in three simple but...This paper proposes a modified version of the Dwarf Mongoose Optimization Algorithm (IDMO) for constrained engineering design problems. This optimization technique modifies the base algorithm (DMO) in three simple but effective ways. First, the alpha selection in IDMO differs from the DMO, where evaluating the probability value of each fitness is just a computational overhead and contributes nothing to the quality of the alpha or other group members. The fittest dwarf mongoose is selected as the alpha, and a new operator ω is introduced, which controls the alpha movement, thereby enhancing the exploration ability and exploitability of the IDMO. Second, the scout group movements are modified by randomization to introduce diversity in the search process and explore unvisited areas. Finally, the babysitter's exchange criterium is modified such that once the criterium is met, the babysitters that are exchanged interact with the dwarf mongoose exchanging them to gain information about food sources and sleeping mounds, which could result in better-fitted mongooses instead of initializing them afresh as done in DMO, then the counter is reset to zero. The proposed IDMO was used to solve the classical and CEC 2020 benchmark functions and 12 continuous/discrete engineering optimization problems. The performance of the IDMO, using different performance metrics and statistical analysis, is compared with the DMO and eight other existing algorithms. In most cases, the results show that solutions achieved by the IDMO are better than those obtained by the existing algorithms.展开更多
In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existenc...In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.展开更多
In this paper, we use the discontinuous exact penalty functions to solve the constrained minimization problems with an integral approach. We examine a general form of the constrained deviation integral and its analyti...In this paper, we use the discontinuous exact penalty functions to solve the constrained minimization problems with an integral approach. We examine a general form of the constrained deviation integral and its analytical properties. The optimality conditions of the penalized minimization problems are proven. To implement the al- gorithm, the cross-entropy method and the importance sampling are used based on the Monte-Carlo technique. Numerical tests show the effectiveness of the proposed algorithm.展开更多
The problems of optimal control (OCPs) related to PDEs are a very active area of research. These problems deal with the processes of mechanical engineering, heat aeronautics, physics, hydro and gas dynamics, the physi...The problems of optimal control (OCPs) related to PDEs are a very active area of research. These problems deal with the processes of mechanical engineering, heat aeronautics, physics, hydro and gas dynamics, the physics of plasma and other real life problems. In this paper, we deal with a class of the constrained OCP for parabolic systems. It is converted to new unconstrained OCP by adding a penalty function to the cost functional. The existence solution of the considering system of parabolic optimal control problem (POCP) is introduced. In this way, the uniqueness theorem for the solving POCP is introduced. Therefore, a theorem for the sufficient differentiability conditions has been proved.展开更多
A new smooth gap function for the box constrained variational inequality problem (VIP) is proposed based on an integral global optimality condition. The smooth gap function is simple and has some good differentiable...A new smooth gap function for the box constrained variational inequality problem (VIP) is proposed based on an integral global optimality condition. The smooth gap function is simple and has some good differentiable properties. The box constrained VIP can be reformulated as a differentiable optimization problem by the proposed smooth gap function. The conditions, under which any stationary point of the optimization problem is the solution to the box constrained VIP, are discussed. A simple frictional contact problem is analyzed to show the applications of the smooth gap function. Finally, the numerical experiments confirm the good theoretical properties of the method.展开更多
We propose an alternating direction method of multipliers(ADMM)for solving the state constrained optimization problems governed by elliptic equations.The unconstrained as well as box-constrained cases of the Dirichlet...We propose an alternating direction method of multipliers(ADMM)for solving the state constrained optimization problems governed by elliptic equations.The unconstrained as well as box-constrained cases of the Dirichlet boundary control,Robin boundary control,and right-hand side control problems are considered here.These continuous optimization problems are transformed into discrete optimization problems by the finite element method discretization,then are solved by ADMM.The ADMM is an efficient first order algorithm with global convergence,which combines the decomposability of dual ascent with the superior convergence properties of the method of multipliers.We shall present exhaustive convergence analysis of ADMM for these different type optimization problems.The numerical experiments are performed to verify the efficiency of the method.展开更多
基金partly supported by the National Natural Science Foundation of China(62076225)。
文摘In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However, an overly finetuned strategy or technique might overfit some problem types,resulting in a lack of versatility. In this article, we propose a generic search strategy that performs an even search in a promising region. The promising region, determined by obtained feasible non-dominated solutions, possesses two general properties.First, the constrained Pareto front(CPF) is included in the promising region. Second, as the number of feasible solutions increases or the convergence performance(i.e., approximation to the CPF) of these solutions improves, the promising region shrinks. Then we develop a new strategy named even search,which utilizes the non-dominated solutions to accelerate convergence and escape from local optima, and the feasible solutions under a constraint relaxation condition to exploit and detect feasible regions. Finally, a diversity measure is adopted to make sure that the individuals in the population evenly cover the valuable areas in the promising region. Experimental results on 45 instances from four benchmark test suites and 14 real-world CMOPs have demonstrated that searching evenly in the promising region can achieve competitive performance and excellent versatility compared to 11 most state-of-the-art methods tailored for CMOPs.
基金sponsored by the Key Knowledge Innovation Program of the Chinese Academy of Sciences (Grant. No. KZCX2-YW-QN203)the National Basic Research Program of China(2007CB411800),the GYHY200906009 of China Meteorological Administration
文摘There are three common types of predictability problems in weather and climate, which each involve different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the upper bound of maximum prediction error, and the lower bound of maximum allowable initial error and parameter error. Highly effcient algorithms have been developed to solve the second optimization problem. And this optimization problem can be used in realistic models for weather and climate to study the upper bound of the maximum prediction error. Although a filtering strategy has been adopted to solve the other two problems, direct solutions are very time-consuming even for a very simple model, which therefore limits the applicability of these two predictability problems in realistic models. In this paper, a new strategy is designed to solve these problems, involving the use of the existing highly effcient algorithms for the second predictability problem in particular. Furthermore, a series of comparisons between the older filtering strategy and the new method are performed. It is demonstrated that the new strategy not only outputs the same results as the old one, but is also more computationally effcient. This would suggest that it is possible to study the predictability problems associated with these two nonlinear optimization problems in realistic forecast models of weather or climate.
基金Projects(61463009,11264005,11361014)supported by the National Natural Science Foundation of ChinaProject([2013]2082)supported by the Science Technology Foundation of Guizhou Province,China
文摘A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches.
基金Supported by the National Natural Science Foundation of China(11201357,81271513 and 91324201)the Fundamental Research Funds for the Central Universities under project(2014-Ia-001)
文摘The convergence analysis of a nonlinear Lagrange algorithm for solving nonlinear constrained optimization problems with both inequality and equality constraints is explored in detail. The estimates for the derivatives of the multiplier mapping and the solution mapping of the proposed algorithm are discussed via the technique of the singular value decomposition of matrix. Based on the estimates, the local convergence results and the rate of convergence of the algorithm are presented when the penalty parameter is less than a threshold under a set of suitable conditions on problem functions. Furthermore, the condition number of the Hessian of the nonlinear Lagrange function with respect to the decision variables is analyzed, which is closely related to efficiency of the algorithm. Finally, the preliminary numericM results for several typical test problems are reported.
文摘To solve single-objective constrained optimization problems,a new population-based evolutionary algorithm with elite strategy(PEAES) is proposed with the concept of single and multi-objective optimization.Constrained functions are combined to be an objective function.During the evolutionary process,the current optimal solution is found and treated as the reference point to divide the population into three sub-populations:one feasible and two infeasible ones.Different evolutionary operations of single or multi-objective optimization are respectively performed in each sub-population with elite strategy.Thirteen famous benchmark functions are selected to evaluate the performance of PEAES in comparison of other three optimization methods.The results show the proposed method is valid in efficiency,precision and probability for solving single-objective constrained optimization problems.
文摘In this paper, a new augmented Lagrangian penalty function for constrained optimization problems is studied. The dual properties of the augmented Lagrangian objective penalty function for constrained optimization problems are proved. Under some conditions, the saddle point of the augmented Lagrangian objective penalty function satisfies the first-order Karush-Kuhn-Tucker (KKT) condition. Especially, when the KKT condition holds for convex programming its saddle point exists. Based on the augmented Lagrangian objective penalty function, an algorithm is developed for finding a global solution to an inequality constrained optimization problem and its global convergence is also proved under some conditions.
基金Projects([2013]2082,[2009]2061)supported by the Science Technology Foundation of Guizhou Province,ChinaProject([2013]140)supported by the Excellent Science Technology Innovation Talents in Universities of Guizhou Province,ChinaProject(2008040)supported by the Natural Science Research in Education Department of Guizhou Province,China
文摘Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much attention and wide applications,owing to its easy implementation and quick convergence.A hybrid cuckoo pattern search algorithm(HCPS) with feasibility-based rule is proposed for solving constrained numerical and engineering design optimization problems.This algorithm can combine the stochastic exploration of the cuckoo search algorithm and the exploitation capability of the pattern search method.Simulation and comparisons based on several well-known benchmark test functions and structural design optimization problems demonstrate the effectiveness,efficiency and robustness of the proposed HCPS algorithm.
文摘In order to improve the distribution and convergence of constrained optimization algorithms,this paper proposes a constrained optimization algorithm based on double populations. Firstly the feasible solutions and infeasible solutions are stored separately through two populations,which can avoid direct comparison between them. The usage of efficient information carried by the infeasible solutions will enlarge exploitation scope and strength diversity of populations. At the same time,adopting the presented concept of constraints domination to update the infeasible set may keep good variety of population and give consideration to convergence. Also the improved mutation operation is employed to further raise the diversity and convergence.The suggested algorithm is compared with 3 state- of- the- art constrained optimization algorithms on standard test problems g01- g13. Simulation results show that the presented algorithm has certain advantages than other algorithms because it can ensure good convergence accuracy while it has good robustness.
基金The research was supported by the State Education Grant for Retumed Scholars
文摘In this paper we report a sparse truncated Newton algorithm for handling large-scale simple bound nonlinear constrained minimixation problem. The truncated Newton method is used to update the variables with indices outside of the active set, while the projected gradient method is used to update the active variables. At each iterative level, the search direction consists of three parts, one of which is a subspace truncated Newton direction, the other two are subspace gradient and modified gradient directions. The subspace truncated Newton direction is obtained by solving a sparse system of linear equations. The global convergence and quadratic convergence rate of the algorithm are proved and some numerical tests are given.
文摘This paper presents a trust region two phase model algorithm for solving the equality and bound constrained nonlinear optimization problem. A concept of substationary point is given. Under suitable assumptions,the global convergence of this algorithm is proved without assuming the linear independence of the gradient of active constraints. A numerical example is also presented.
文摘Iterative methods for solving discrete optimal control problems are constructed and investigated. These discrete problems arise when approximating by finite difference method or by finite element method the optimal control problems which contain a linear elliptic boundary value problem as a state equation, control in the righthand side of the equation or in the boundary conditions, and point-wise constraints for both state and control functions. The convergence of the constructed iterative methods is proved, the implementation problems are discussed, and the numerical comparison of the methods is executed.
文摘We consider a linear-quadratical optimal control problem of a system governed by parabolic equation with distributed in right-hand side control and control and state constraints. We construct a mesh approximation of this problem using different two-level approximations of the state equation, ADI and fractional steps approximations in time among others. Iterative solution methods are investigated for all constructed approximations of the optimal control problem. Their implementation can be carried out in parallel manner.
基金supported by the Grant of the Academy of Mathematics and System Science of Chinese Academy of Sciences-The Hong Kong Polytechnic University Joint Research Institute (AMSS-PolyU)the Research Grands Council Grant of The Hong Kong Polytechnic University (No. 5365/09E)
文摘This paper introduces a new exact and smooth penalty function to tackle constrained min-max problems. By using this new penalty function and adding just one extra variable, a constrained rain-max problem is transformed into an unconstrained optimization one. It is proved that, under certain reasonable assumptions and when the penalty parameter is sufficiently large, the minimizer of this unconstrained optimization problem is equivalent to the minimizer of the original constrained one. Numerical results demonstrate that this penalty function method is an effective and promising approach for solving constrained finite min-max problems.
文摘This paper proposes a modified version of the Dwarf Mongoose Optimization Algorithm (IDMO) for constrained engineering design problems. This optimization technique modifies the base algorithm (DMO) in three simple but effective ways. First, the alpha selection in IDMO differs from the DMO, where evaluating the probability value of each fitness is just a computational overhead and contributes nothing to the quality of the alpha or other group members. The fittest dwarf mongoose is selected as the alpha, and a new operator ω is introduced, which controls the alpha movement, thereby enhancing the exploration ability and exploitability of the IDMO. Second, the scout group movements are modified by randomization to introduce diversity in the search process and explore unvisited areas. Finally, the babysitter's exchange criterium is modified such that once the criterium is met, the babysitters that are exchanged interact with the dwarf mongoose exchanging them to gain information about food sources and sleeping mounds, which could result in better-fitted mongooses instead of initializing them afresh as done in DMO, then the counter is reset to zero. The proposed IDMO was used to solve the classical and CEC 2020 benchmark functions and 12 continuous/discrete engineering optimization problems. The performance of the IDMO, using different performance metrics and statistical analysis, is compared with the DMO and eight other existing algorithms. In most cases, the results show that solutions achieved by the IDMO are better than those obtained by the existing algorithms.
基金supported by the National Basic Research Program under the Grant 2005CB321701the National Natural Science Foundation of China under the Grants 60474027 and 10771211.
文摘In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.
基金supported by the National Natural Science Foundation of China (No. 10771133)the KeyDisciplines of Shanghai Municipality (Operations Research and Cybernetics) (No. S30104)
文摘In this paper, we use the discontinuous exact penalty functions to solve the constrained minimization problems with an integral approach. We examine a general form of the constrained deviation integral and its analytical properties. The optimality conditions of the penalized minimization problems are proven. To implement the al- gorithm, the cross-entropy method and the importance sampling are used based on the Monte-Carlo technique. Numerical tests show the effectiveness of the proposed algorithm.
文摘The problems of optimal control (OCPs) related to PDEs are a very active area of research. These problems deal with the processes of mechanical engineering, heat aeronautics, physics, hydro and gas dynamics, the physics of plasma and other real life problems. In this paper, we deal with a class of the constrained OCP for parabolic systems. It is converted to new unconstrained OCP by adding a penalty function to the cost functional. The existence solution of the considering system of parabolic optimal control problem (POCP) is introduced. In this way, the uniqueness theorem for the solving POCP is introduced. Therefore, a theorem for the sufficient differentiability conditions has been proved.
基金Project supported by the National Natural Science Foundation of China(Nos.10902077,11172209, and 10572031)
文摘A new smooth gap function for the box constrained variational inequality problem (VIP) is proposed based on an integral global optimality condition. The smooth gap function is simple and has some good differentiable properties. The box constrained VIP can be reformulated as a differentiable optimization problem by the proposed smooth gap function. The conditions, under which any stationary point of the optimization problem is the solution to the box constrained VIP, are discussed. A simple frictional contact problem is analyzed to show the applications of the smooth gap function. Finally, the numerical experiments confirm the good theoretical properties of the method.
基金supported by National Natural Science Foundation of China (Grant No. 11471141)the Basic Research of the Science and Technology Development Program of Jilin Province (Grant No. 20150101058JC)
文摘We propose an alternating direction method of multipliers(ADMM)for solving the state constrained optimization problems governed by elliptic equations.The unconstrained as well as box-constrained cases of the Dirichlet boundary control,Robin boundary control,and right-hand side control problems are considered here.These continuous optimization problems are transformed into discrete optimization problems by the finite element method discretization,then are solved by ADMM.The ADMM is an efficient first order algorithm with global convergence,which combines the decomposability of dual ascent with the superior convergence properties of the method of multipliers.We shall present exhaustive convergence analysis of ADMM for these different type optimization problems.The numerical experiments are performed to verify the efficiency of the method.