This paper presents a survey of image synthesis and editing with Generative Adversarial Networks(GANs). GANs consist of two deep networks, a generator and a discriminator, which are trained in a competitive way. Due...This paper presents a survey of image synthesis and editing with Generative Adversarial Networks(GANs). GANs consist of two deep networks, a generator and a discriminator, which are trained in a competitive way. Due to the power of deep networks and the competitive training manner, GANs are capable of producing reasonable and realistic images, and have shown great capability in many image synthesis and editing applications.This paper surveys recent GAN papers regarding topics including, but not limited to, texture synthesis, image inpainting, image-to-image translation, and image editing.展开更多
基金supported by the National Key Technology R&D Program(No.2016YFB1001402)the National Natural Science Foundation of China(No.61521002)+2 种基金the Joint NSFC-ISF Research Program(No.61561146393)Research Grant of Beijing Higher Institution Engineering Research Center and Tsinghua-Tencent Joint Laboratory for Internet Innovation Technologysupported by the EPSRC CDE(No.EP/L016540/1)
文摘This paper presents a survey of image synthesis and editing with Generative Adversarial Networks(GANs). GANs consist of two deep networks, a generator and a discriminator, which are trained in a competitive way. Due to the power of deep networks and the competitive training manner, GANs are capable of producing reasonable and realistic images, and have shown great capability in many image synthesis and editing applications.This paper surveys recent GAN papers regarding topics including, but not limited to, texture synthesis, image inpainting, image-to-image translation, and image editing.