There are three common types of predictability problems in weather and climate, which each involve different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the upper bound o...There are three common types of predictability problems in weather and climate, which each involve different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the upper bound of maximum prediction error, and the lower bound of maximum allowable initial error and parameter error. Highly effcient algorithms have been developed to solve the second optimization problem. And this optimization problem can be used in realistic models for weather and climate to study the upper bound of the maximum prediction error. Although a filtering strategy has been adopted to solve the other two problems, direct solutions are very time-consuming even for a very simple model, which therefore limits the applicability of these two predictability problems in realistic models. In this paper, a new strategy is designed to solve these problems, involving the use of the existing highly effcient algorithms for the second predictability problem in particular. Furthermore, a series of comparisons between the older filtering strategy and the new method are performed. It is demonstrated that the new strategy not only outputs the same results as the old one, but is also more computationally effcient. This would suggest that it is possible to study the predictability problems associated with these two nonlinear optimization problems in realistic forecast models of weather or climate.展开更多
In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However,...In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However, an overly finetuned strategy or technique might overfit some problem types,resulting in a lack of versatility. In this article, we propose a generic search strategy that performs an even search in a promising region. The promising region, determined by obtained feasible non-dominated solutions, possesses two general properties.First, the constrained Pareto front(CPF) is included in the promising region. Second, as the number of feasible solutions increases or the convergence performance(i.e., approximation to the CPF) of these solutions improves, the promising region shrinks. Then we develop a new strategy named even search,which utilizes the non-dominated solutions to accelerate convergence and escape from local optima, and the feasible solutions under a constraint relaxation condition to exploit and detect feasible regions. Finally, a diversity measure is adopted to make sure that the individuals in the population evenly cover the valuable areas in the promising region. Experimental results on 45 instances from four benchmark test suites and 14 real-world CMOPs have demonstrated that searching evenly in the promising region can achieve competitive performance and excellent versatility compared to 11 most state-of-the-art methods tailored for CMOPs.展开更多
A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO c...A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches.展开更多
The aim of this paper is to study the relationship among Minty vector variational-like inequality problem, Stampacchia vector variational-like inequality problem and vector optimization problem involving (G, α)-invex...The aim of this paper is to study the relationship among Minty vector variational-like inequality problem, Stampacchia vector variational-like inequality problem and vector optimization problem involving (G, α)-invex functions. Furthermore, we establish equivalence among the solutions of weak formulations of Minty vector variational-like inequality problem, Stampacchia vector variational-like inequality problem and weak efficient solution of vector optimization problem under the assumption of (G, α)-invex functions. Examples are provided to elucidate our results.展开更多
The convergence analysis of a nonlinear Lagrange algorithm for solving nonlinear constrained optimization problems with both inequality and equality constraints is explored in detail. The estimates for the derivatives...The convergence analysis of a nonlinear Lagrange algorithm for solving nonlinear constrained optimization problems with both inequality and equality constraints is explored in detail. The estimates for the derivatives of the multiplier mapping and the solution mapping of the proposed algorithm are discussed via the technique of the singular value decomposition of matrix. Based on the estimates, the local convergence results and the rate of convergence of the algorithm are presented when the penalty parameter is less than a threshold under a set of suitable conditions on problem functions. Furthermore, the condition number of the Hessian of the nonlinear Lagrange function with respect to the decision variables is analyzed, which is closely related to efficiency of the algorithm. Finally, the preliminary numericM results for several typical test problems are reported.展开更多
To solve single-objective constrained optimization problems,a new population-based evolutionary algorithm with elite strategy(PEAES) is proposed with the concept of single and multi-objective optimization.Constrained ...To solve single-objective constrained optimization problems,a new population-based evolutionary algorithm with elite strategy(PEAES) is proposed with the concept of single and multi-objective optimization.Constrained functions are combined to be an objective function.During the evolutionary process,the current optimal solution is found and treated as the reference point to divide the population into three sub-populations:one feasible and two infeasible ones.Different evolutionary operations of single or multi-objective optimization are respectively performed in each sub-population with elite strategy.Thirteen famous benchmark functions are selected to evaluate the performance of PEAES in comparison of other three optimization methods.The results show the proposed method is valid in efficiency,precision and probability for solving single-objective constrained optimization problems.展开更多
In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-...In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-uniform spaces without convexity structure. By using the KKM type theorem and Himmelberg type fixed point theorem proposed by the author, some new existence theorems of solutions for the systems of generalized vector quasi-variational inclusion problems are proved. As to its applications, we obtain some existence results of solutions for systems of generalized vector quasi-optimization problems.展开更多
In this paper, a new augmented Lagrangian penalty function for constrained optimization problems is studied. The dual properties of the augmented Lagrangian objective penalty function for constrained optimization prob...In this paper, a new augmented Lagrangian penalty function for constrained optimization problems is studied. The dual properties of the augmented Lagrangian objective penalty function for constrained optimization problems are proved. Under some conditions, the saddle point of the augmented Lagrangian objective penalty function satisfies the first-order Karush-Kuhn-Tucker (KKT) condition. Especially, when the KKT condition holds for convex programming its saddle point exists. Based on the augmented Lagrangian objective penalty function, an algorithm is developed for finding a global solution to an inequality constrained optimization problem and its global convergence is also proved under some conditions.展开更多
Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much at...Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much attention and wide applications,owing to its easy implementation and quick convergence.A hybrid cuckoo pattern search algorithm(HCPS) with feasibility-based rule is proposed for solving constrained numerical and engineering design optimization problems.This algorithm can combine the stochastic exploration of the cuckoo search algorithm and the exploitation capability of the pattern search method.Simulation and comparisons based on several well-known benchmark test functions and structural design optimization problems demonstrate the effectiveness,efficiency and robustness of the proposed HCPS algorithm.展开更多
In order to improve the distribution and convergence of constrained optimization algorithms,this paper proposes a constrained optimization algorithm based on double populations. Firstly the feasible solutions and infe...In order to improve the distribution and convergence of constrained optimization algorithms,this paper proposes a constrained optimization algorithm based on double populations. Firstly the feasible solutions and infeasible solutions are stored separately through two populations,which can avoid direct comparison between them. The usage of efficient information carried by the infeasible solutions will enlarge exploitation scope and strength diversity of populations. At the same time,adopting the presented concept of constraints domination to update the infeasible set may keep good variety of population and give consideration to convergence. Also the improved mutation operation is employed to further raise the diversity and convergence.The suggested algorithm is compared with 3 state- of- the- art constrained optimization algorithms on standard test problems g01- g13. Simulation results show that the presented algorithm has certain advantages than other algorithms because it can ensure good convergence accuracy while it has good robustness.展开更多
In this paper, some theoretical notions of well-posedness and of well-posedness in the generalized sense for scalar optimization problems are presented and some important results are analysed. Similar notions of well-...In this paper, some theoretical notions of well-posedness and of well-posedness in the generalized sense for scalar optimization problems are presented and some important results are analysed. Similar notions of well-posedness, respectively for a vector optimization problem and for a variational inequality of differential type, are discussed subsequently and, among the various vector well-posedness notions known in the literature, the attention is focused on the concept of pointwise well-posedness. Moreover, after a review of well-posedness properties, the study is further extended to a scalarizing procedure that preserves well-posedness of the notions listed, namely to a result, obtained with a special scalarizing function, which links the notion of pontwise well-posedness to the well-posedness of a suitable scalar variational inequality of differential type.展开更多
In this paper we report a sparse truncated Newton algorithm for handling large-scale simple bound nonlinear constrained minimixation problem. The truncated Newton method is used to update the variables with indices ou...In this paper we report a sparse truncated Newton algorithm for handling large-scale simple bound nonlinear constrained minimixation problem. The truncated Newton method is used to update the variables with indices outside of the active set, while the projected gradient method is used to update the active variables. At each iterative level, the search direction consists of three parts, one of which is a subspace truncated Newton direction, the other two are subspace gradient and modified gradient directions. The subspace truncated Newton direction is obtained by solving a sparse system of linear equations. The global convergence and quadratic convergence rate of the algorithm are proved and some numerical tests are given.展开更多
This paper presents a trust region two phase model algorithm for solving the equality and bound constrained nonlinear optimization problem. A concept of substationary point is given. Under suitable assumptions,the gl...This paper presents a trust region two phase model algorithm for solving the equality and bound constrained nonlinear optimization problem. A concept of substationary point is given. Under suitable assumptions,the global convergence of this algorithm is proved without assuming the linear independence of the gradient of active constraints. A numerical example is also presented.展开更多
This paper introduces a new exact and smooth penalty function to tackle constrained min-max problems. By using this new penalty function and adding just one extra variable, a constrained rain-max problem is transforme...This paper introduces a new exact and smooth penalty function to tackle constrained min-max problems. By using this new penalty function and adding just one extra variable, a constrained rain-max problem is transformed into an unconstrained optimization one. It is proved that, under certain reasonable assumptions and when the penalty parameter is sufficiently large, the minimizer of this unconstrained optimization problem is equivalent to the minimizer of the original constrained one. Numerical results demonstrate that this penalty function method is an effective and promising approach for solving constrained finite min-max problems.展开更多
Iterative methods for solving discrete optimal control problems are constructed and investigated. These discrete problems arise when approximating by finite difference method or by finite element method the optimal co...Iterative methods for solving discrete optimal control problems are constructed and investigated. These discrete problems arise when approximating by finite difference method or by finite element method the optimal control problems which contain a linear elliptic boundary value problem as a state equation, control in the righthand side of the equation or in the boundary conditions, and point-wise constraints for both state and control functions. The convergence of the constructed iterative methods is proved, the implementation problems are discussed, and the numerical comparison of the methods is executed.展开更多
Some remarks are made on the use of the Abadie constraint qualification, the Guignard constraint qualifications and the Guignard regularity condition in obtaining weak and strong Kuhn-Tucker type optimality conditions...Some remarks are made on the use of the Abadie constraint qualification, the Guignard constraint qualifications and the Guignard regularity condition in obtaining weak and strong Kuhn-Tucker type optimality conditions in differentiable vector optimization problems.展开更多
We consider a linear-quadratical optimal control problem of a system governed by parabolic equation with distributed in right-hand side control and control and state constraints. We construct a mesh approximation of t...We consider a linear-quadratical optimal control problem of a system governed by parabolic equation with distributed in right-hand side control and control and state constraints. We construct a mesh approximation of this problem using different two-level approximations of the state equation, ADI and fractional steps approximations in time among others. Iterative solution methods are investigated for all constructed approximations of the optimal control problem. Their implementation can be carried out in parallel manner.展开更多
We presented Mathematical apparatus of the choice of optimum parameters of technical, technological systems and materials on the basis of vector optimization. We have considered the formulation and solution of three t...We presented Mathematical apparatus of the choice of optimum parameters of technical, technological systems and materials on the basis of vector optimization. We have considered the formulation and solution of three types of tasks presented below. First, the problem of selecting the optimal parameters of technical systems depending on the functional characteristics of the system. Secondly, the problem of selecting the optimal parameters of the process depending on the technological characteristics of the process. Third, the problem of choosing the optimal structure of the material depending on the functional characteristics of this material. The statement of all problems is made in the form of vector problems of mathematical (nonlinear) programming. The theory and the principle of optimality of the solution of vector tasks it is explained in work of https://rdcu.be/bhZ8i. The implementation of the methodology is shown on a numerical example of the choice of optimum parameters of the technical, technological systems and materials. On the basis of mathematical methods of solution of vector problems we developed the software in the MATLAB system. The numerical example includes: input data (requirement specification) for modeling;transformation of mathematical models with uncertainty to the model under certainty;acceptance of an optimal solution with equivalent criteria (the solution of numerical model);acceptance of an optimal solution with the given priority of criterion.展开更多
Transductive support vector machine optimization problem is a NP problem, in the case of larger number of labeled samples, it is often difficult to obtain a global optimal solution, thereby the good generalization abi...Transductive support vector machine optimization problem is a NP problem, in the case of larger number of labeled samples, it is often difficult to obtain a global optimal solution, thereby the good generalization ability of transductive learning has been affected. Previous methods can not give consideration to both running efficiency and classification precision. In this paper, a transductive support vector machine algorithm based on ant colony optimization is proposed to overcome the drawbacks of the previous methods. The proposed algorithm approaches the approximate optimal solution of Transductive support vector machine optimization problem by ant colony optimization algorithm, and the advantage of transductive learning can be fully demonstrated. Experiments on several UCI standard datasets and the newsgroups 20 dataset showed that, with respect to running time and classification precision, the proposed algorithm has obvious advantage over the previous algorithms.展开更多
Support vector machine has become an increasingly popular tool for machine learning tasks involving classification, regression or novelty detection. Training a support vector machine requires the solution of a very la...Support vector machine has become an increasingly popular tool for machine learning tasks involving classification, regression or novelty detection. Training a support vector machine requires the solution of a very large quadratic programming problem. Traditional optimization methods cannot be directly applied due to memory restrictions. Up to now, several approaches exist for circumventing the above shortcomings and work well. Another learning algorithm, particle swarm optimization, for training SVM is introduted. The method is tested on UCI datasets.展开更多
基金sponsored by the Key Knowledge Innovation Program of the Chinese Academy of Sciences (Grant. No. KZCX2-YW-QN203)the National Basic Research Program of China(2007CB411800),the GYHY200906009 of China Meteorological Administration
文摘There are three common types of predictability problems in weather and climate, which each involve different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the upper bound of maximum prediction error, and the lower bound of maximum allowable initial error and parameter error. Highly effcient algorithms have been developed to solve the second optimization problem. And this optimization problem can be used in realistic models for weather and climate to study the upper bound of the maximum prediction error. Although a filtering strategy has been adopted to solve the other two problems, direct solutions are very time-consuming even for a very simple model, which therefore limits the applicability of these two predictability problems in realistic models. In this paper, a new strategy is designed to solve these problems, involving the use of the existing highly effcient algorithms for the second predictability problem in particular. Furthermore, a series of comparisons between the older filtering strategy and the new method are performed. It is demonstrated that the new strategy not only outputs the same results as the old one, but is also more computationally effcient. This would suggest that it is possible to study the predictability problems associated with these two nonlinear optimization problems in realistic forecast models of weather or climate.
基金partly supported by the National Natural Science Foundation of China(62076225)。
文摘In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However, an overly finetuned strategy or technique might overfit some problem types,resulting in a lack of versatility. In this article, we propose a generic search strategy that performs an even search in a promising region. The promising region, determined by obtained feasible non-dominated solutions, possesses two general properties.First, the constrained Pareto front(CPF) is included in the promising region. Second, as the number of feasible solutions increases or the convergence performance(i.e., approximation to the CPF) of these solutions improves, the promising region shrinks. Then we develop a new strategy named even search,which utilizes the non-dominated solutions to accelerate convergence and escape from local optima, and the feasible solutions under a constraint relaxation condition to exploit and detect feasible regions. Finally, a diversity measure is adopted to make sure that the individuals in the population evenly cover the valuable areas in the promising region. Experimental results on 45 instances from four benchmark test suites and 14 real-world CMOPs have demonstrated that searching evenly in the promising region can achieve competitive performance and excellent versatility compared to 11 most state-of-the-art methods tailored for CMOPs.
基金Projects(61463009,11264005,11361014)supported by the National Natural Science Foundation of ChinaProject([2013]2082)supported by the Science Technology Foundation of Guizhou Province,China
文摘A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches.
文摘The aim of this paper is to study the relationship among Minty vector variational-like inequality problem, Stampacchia vector variational-like inequality problem and vector optimization problem involving (G, α)-invex functions. Furthermore, we establish equivalence among the solutions of weak formulations of Minty vector variational-like inequality problem, Stampacchia vector variational-like inequality problem and weak efficient solution of vector optimization problem under the assumption of (G, α)-invex functions. Examples are provided to elucidate our results.
基金Supported by the National Natural Science Foundation of China(11201357,81271513 and 91324201)the Fundamental Research Funds for the Central Universities under project(2014-Ia-001)
文摘The convergence analysis of a nonlinear Lagrange algorithm for solving nonlinear constrained optimization problems with both inequality and equality constraints is explored in detail. The estimates for the derivatives of the multiplier mapping and the solution mapping of the proposed algorithm are discussed via the technique of the singular value decomposition of matrix. Based on the estimates, the local convergence results and the rate of convergence of the algorithm are presented when the penalty parameter is less than a threshold under a set of suitable conditions on problem functions. Furthermore, the condition number of the Hessian of the nonlinear Lagrange function with respect to the decision variables is analyzed, which is closely related to efficiency of the algorithm. Finally, the preliminary numericM results for several typical test problems are reported.
文摘To solve single-objective constrained optimization problems,a new population-based evolutionary algorithm with elite strategy(PEAES) is proposed with the concept of single and multi-objective optimization.Constrained functions are combined to be an objective function.During the evolutionary process,the current optimal solution is found and treated as the reference point to divide the population into three sub-populations:one feasible and two infeasible ones.Different evolutionary operations of single or multi-objective optimization are respectively performed in each sub-population with elite strategy.Thirteen famous benchmark functions are selected to evaluate the performance of PEAES in comparison of other three optimization methods.The results show the proposed method is valid in efficiency,precision and probability for solving single-objective constrained optimization problems.
基金supported by the Natural Science Foundation of Sichuan Education Department of China(No. 07ZA092)the Sichuan Province Leading Academic Discipline Project (No. SZD0406)
文摘In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-uniform spaces without convexity structure. By using the KKM type theorem and Himmelberg type fixed point theorem proposed by the author, some new existence theorems of solutions for the systems of generalized vector quasi-variational inclusion problems are proved. As to its applications, we obtain some existence results of solutions for systems of generalized vector quasi-optimization problems.
文摘In this paper, a new augmented Lagrangian penalty function for constrained optimization problems is studied. The dual properties of the augmented Lagrangian objective penalty function for constrained optimization problems are proved. Under some conditions, the saddle point of the augmented Lagrangian objective penalty function satisfies the first-order Karush-Kuhn-Tucker (KKT) condition. Especially, when the KKT condition holds for convex programming its saddle point exists. Based on the augmented Lagrangian objective penalty function, an algorithm is developed for finding a global solution to an inequality constrained optimization problem and its global convergence is also proved under some conditions.
基金Projects([2013]2082,[2009]2061)supported by the Science Technology Foundation of Guizhou Province,ChinaProject([2013]140)supported by the Excellent Science Technology Innovation Talents in Universities of Guizhou Province,ChinaProject(2008040)supported by the Natural Science Research in Education Department of Guizhou Province,China
文摘Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much attention and wide applications,owing to its easy implementation and quick convergence.A hybrid cuckoo pattern search algorithm(HCPS) with feasibility-based rule is proposed for solving constrained numerical and engineering design optimization problems.This algorithm can combine the stochastic exploration of the cuckoo search algorithm and the exploitation capability of the pattern search method.Simulation and comparisons based on several well-known benchmark test functions and structural design optimization problems demonstrate the effectiveness,efficiency and robustness of the proposed HCPS algorithm.
文摘In order to improve the distribution and convergence of constrained optimization algorithms,this paper proposes a constrained optimization algorithm based on double populations. Firstly the feasible solutions and infeasible solutions are stored separately through two populations,which can avoid direct comparison between them. The usage of efficient information carried by the infeasible solutions will enlarge exploitation scope and strength diversity of populations. At the same time,adopting the presented concept of constraints domination to update the infeasible set may keep good variety of population and give consideration to convergence. Also the improved mutation operation is employed to further raise the diversity and convergence.The suggested algorithm is compared with 3 state- of- the- art constrained optimization algorithms on standard test problems g01- g13. Simulation results show that the presented algorithm has certain advantages than other algorithms because it can ensure good convergence accuracy while it has good robustness.
文摘In this paper, some theoretical notions of well-posedness and of well-posedness in the generalized sense for scalar optimization problems are presented and some important results are analysed. Similar notions of well-posedness, respectively for a vector optimization problem and for a variational inequality of differential type, are discussed subsequently and, among the various vector well-posedness notions known in the literature, the attention is focused on the concept of pointwise well-posedness. Moreover, after a review of well-posedness properties, the study is further extended to a scalarizing procedure that preserves well-posedness of the notions listed, namely to a result, obtained with a special scalarizing function, which links the notion of pontwise well-posedness to the well-posedness of a suitable scalar variational inequality of differential type.
基金The research was supported by the State Education Grant for Retumed Scholars
文摘In this paper we report a sparse truncated Newton algorithm for handling large-scale simple bound nonlinear constrained minimixation problem. The truncated Newton method is used to update the variables with indices outside of the active set, while the projected gradient method is used to update the active variables. At each iterative level, the search direction consists of three parts, one of which is a subspace truncated Newton direction, the other two are subspace gradient and modified gradient directions. The subspace truncated Newton direction is obtained by solving a sparse system of linear equations. The global convergence and quadratic convergence rate of the algorithm are proved and some numerical tests are given.
文摘This paper presents a trust region two phase model algorithm for solving the equality and bound constrained nonlinear optimization problem. A concept of substationary point is given. Under suitable assumptions,the global convergence of this algorithm is proved without assuming the linear independence of the gradient of active constraints. A numerical example is also presented.
基金supported by the Grant of the Academy of Mathematics and System Science of Chinese Academy of Sciences-The Hong Kong Polytechnic University Joint Research Institute (AMSS-PolyU)the Research Grands Council Grant of The Hong Kong Polytechnic University (No. 5365/09E)
文摘This paper introduces a new exact and smooth penalty function to tackle constrained min-max problems. By using this new penalty function and adding just one extra variable, a constrained rain-max problem is transformed into an unconstrained optimization one. It is proved that, under certain reasonable assumptions and when the penalty parameter is sufficiently large, the minimizer of this unconstrained optimization problem is equivalent to the minimizer of the original constrained one. Numerical results demonstrate that this penalty function method is an effective and promising approach for solving constrained finite min-max problems.
文摘Iterative methods for solving discrete optimal control problems are constructed and investigated. These discrete problems arise when approximating by finite difference method or by finite element method the optimal control problems which contain a linear elliptic boundary value problem as a state equation, control in the righthand side of the equation or in the boundary conditions, and point-wise constraints for both state and control functions. The convergence of the constructed iterative methods is proved, the implementation problems are discussed, and the numerical comparison of the methods is executed.
文摘Some remarks are made on the use of the Abadie constraint qualification, the Guignard constraint qualifications and the Guignard regularity condition in obtaining weak and strong Kuhn-Tucker type optimality conditions in differentiable vector optimization problems.
文摘We consider a linear-quadratical optimal control problem of a system governed by parabolic equation with distributed in right-hand side control and control and state constraints. We construct a mesh approximation of this problem using different two-level approximations of the state equation, ADI and fractional steps approximations in time among others. Iterative solution methods are investigated for all constructed approximations of the optimal control problem. Their implementation can be carried out in parallel manner.
文摘We presented Mathematical apparatus of the choice of optimum parameters of technical, technological systems and materials on the basis of vector optimization. We have considered the formulation and solution of three types of tasks presented below. First, the problem of selecting the optimal parameters of technical systems depending on the functional characteristics of the system. Secondly, the problem of selecting the optimal parameters of the process depending on the technological characteristics of the process. Third, the problem of choosing the optimal structure of the material depending on the functional characteristics of this material. The statement of all problems is made in the form of vector problems of mathematical (nonlinear) programming. The theory and the principle of optimality of the solution of vector tasks it is explained in work of https://rdcu.be/bhZ8i. The implementation of the methodology is shown on a numerical example of the choice of optimum parameters of the technical, technological systems and materials. On the basis of mathematical methods of solution of vector problems we developed the software in the MATLAB system. The numerical example includes: input data (requirement specification) for modeling;transformation of mathematical models with uncertainty to the model under certainty;acceptance of an optimal solution with equivalent criteria (the solution of numerical model);acceptance of an optimal solution with the given priority of criterion.
基金This work is sponsored by the National Natural Science Foundation of China (Nos. 61402246, 61402126, 61370083, 61370086, 61303193, and 61572268), a Project of Shandong Province Higher Educational Science and Technology Program (No. J15LN38,J14LN31), Qingdao indigenous innovation program (No. 15-9-1-47-jch), the Project of Shandong Provincial Natural Science Foundation of China (No. ZR2014FL019), the Open Project of Collaborative Innovation Center of Green Tyres & Rubber (No. 2014GTR0020), the National Research Foundation for the Doctoral Program of Higher Education of China (No.20122304110012), the Science and Technology Research Project Foundation of Heilongjiang Province Education Department (No. 12531105), Heilongjiang Province Postdoctoral Research Start Foundation (No. LBH-Q13092), and the National Key Technology R&D Program of the Ministry of Science and Technology under Grant No. 2012BAH81F02.
文摘Transductive support vector machine optimization problem is a NP problem, in the case of larger number of labeled samples, it is often difficult to obtain a global optimal solution, thereby the good generalization ability of transductive learning has been affected. Previous methods can not give consideration to both running efficiency and classification precision. In this paper, a transductive support vector machine algorithm based on ant colony optimization is proposed to overcome the drawbacks of the previous methods. The proposed algorithm approaches the approximate optimal solution of Transductive support vector machine optimization problem by ant colony optimization algorithm, and the advantage of transductive learning can be fully demonstrated. Experiments on several UCI standard datasets and the newsgroups 20 dataset showed that, with respect to running time and classification precision, the proposed algorithm has obvious advantage over the previous algorithms.
文摘Support vector machine has become an increasingly popular tool for machine learning tasks involving classification, regression or novelty detection. Training a support vector machine requires the solution of a very large quadratic programming problem. Traditional optimization methods cannot be directly applied due to memory restrictions. Up to now, several approaches exist for circumventing the above shortcomings and work well. Another learning algorithm, particle swarm optimization, for training SVM is introduted. The method is tested on UCI datasets.