In this study, we consider the generation of optimal persistent formations for heterogeneous multi-agent systems, with the leader constraint that only specific agents can act as leaders. We analyze three modes to cont...In this study, we consider the generation of optimal persistent formations for heterogeneous multi-agent systems, with the leader constraint that only specific agents can act as leaders. We analyze three modes to control the optimal persistent formations in two-dimensional space, thereby establishing a model for their constrained generation. Then, we propose an algorithm for generating the optimal persistent formation for heterogeneous multi-agent systems with a leader constraint (LC-HMAS-OPFGA), which is the exact solution algorithm of the model, and we theoretically prove its validity. This algorithm includes two kernel sub-algorithms, which are optimal persistent graph generating algorithm based on a minimum cost arborescence and the shortest path (MCA-SP-OPGGA), and the optimal persistent graph adjusting algorithm based on the shortest path (SP-OPGAA). Under a given agent formation shape and leader constraint, LC-HMAS-OPFGA first generates the network topology and its optimal rigid graph corresponding to this formation shape. Then, LC-HMAS- OPFGA uses MCA-SP-OPGGA to direct the optimal rigid graph to generate the optimal persistent graph. Finally, LC- HMAS-OPFGA uses SP-OPGAA to adjust the optimal persistent graph until it satisfies the leader constraint. We also demonstrate the algorithm, LC-HMAS-OPFGA, with an example and verify its effectiveness.展开更多
Cooperative multi-agent reinforcement learning( MARL) is an important topic in the field of artificial intelligence,in which distributed constraint optimization( DCOP) algorithms have been widely used to coordinat...Cooperative multi-agent reinforcement learning( MARL) is an important topic in the field of artificial intelligence,in which distributed constraint optimization( DCOP) algorithms have been widely used to coordinate the actions of multiple agents. However,dense communication among agents affects the practicability of DCOP algorithms. In this paper,we propose a novel DCOP algorithm dealing with the previous DCOP algorithms' communication problem by reducing constraints.The contributions of this paper are primarily threefold:(1) It is proved that removing constraints can effectively reduce the communication burden of DCOP algorithms.(2) An criterion is provided to identify insignificant constraints whose elimination doesn't have a great impact on the performance of the whole system.(3) A constraint-reduced DCOP algorithm is proposed by adopting a variant of spectral clustering algorithm to detect and eliminate the insignificant constraints. Our algorithm reduces the communication burdern of the benchmark DCOP algorithm while keeping its overall performance unaffected. The performance of constraint-reduced DCOP algorithm is evaluated on four configurations of cooperative sensor networks. The effectiveness of communication reduction is also verified by comparisons between the constraint-reduced DCOP and the benchmark DCOP.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.71671059,71401048,71521001,71690230,71690235,and 71472058)the Anhui Provincial Natural Science Foundation,China(Grant No.1508085MG140)
文摘In this study, we consider the generation of optimal persistent formations for heterogeneous multi-agent systems, with the leader constraint that only specific agents can act as leaders. We analyze three modes to control the optimal persistent formations in two-dimensional space, thereby establishing a model for their constrained generation. Then, we propose an algorithm for generating the optimal persistent formation for heterogeneous multi-agent systems with a leader constraint (LC-HMAS-OPFGA), which is the exact solution algorithm of the model, and we theoretically prove its validity. This algorithm includes two kernel sub-algorithms, which are optimal persistent graph generating algorithm based on a minimum cost arborescence and the shortest path (MCA-SP-OPGGA), and the optimal persistent graph adjusting algorithm based on the shortest path (SP-OPGAA). Under a given agent formation shape and leader constraint, LC-HMAS-OPFGA first generates the network topology and its optimal rigid graph corresponding to this formation shape. Then, LC-HMAS- OPFGA uses MCA-SP-OPGGA to direct the optimal rigid graph to generate the optimal persistent graph. Finally, LC- HMAS-OPFGA uses SP-OPGAA to adjust the optimal persistent graph until it satisfies the leader constraint. We also demonstrate the algorithm, LC-HMAS-OPFGA, with an example and verify its effectiveness.
基金Supported by the National Social Science Foundation of China(15ZDA034,14BZZ028)Beijing Social Science Foundation(16JDGLA036)JKF Program of People’s Public Security University of China(2016JKF01318)
文摘Cooperative multi-agent reinforcement learning( MARL) is an important topic in the field of artificial intelligence,in which distributed constraint optimization( DCOP) algorithms have been widely used to coordinate the actions of multiple agents. However,dense communication among agents affects the practicability of DCOP algorithms. In this paper,we propose a novel DCOP algorithm dealing with the previous DCOP algorithms' communication problem by reducing constraints.The contributions of this paper are primarily threefold:(1) It is proved that removing constraints can effectively reduce the communication burden of DCOP algorithms.(2) An criterion is provided to identify insignificant constraints whose elimination doesn't have a great impact on the performance of the whole system.(3) A constraint-reduced DCOP algorithm is proposed by adopting a variant of spectral clustering algorithm to detect and eliminate the insignificant constraints. Our algorithm reduces the communication burdern of the benchmark DCOP algorithm while keeping its overall performance unaffected. The performance of constraint-reduced DCOP algorithm is evaluated on four configurations of cooperative sensor networks. The effectiveness of communication reduction is also verified by comparisons between the constraint-reduced DCOP and the benchmark DCOP.