The past decade witnessed rapid development of constraint satisfaction technologies, where algorithms are now able to cope with larger and harder problems. However, owing to the fact that constraints are inherently de...The past decade witnessed rapid development of constraint satisfaction technologies, where algorithms are now able to cope with larger and harder problems. However, owing to the fact that constraints are inherently declarative, attention is quickly turning toward developing high-level programming languages within which such problems can be modeled and also solved. Along these lines, this paper presents DEPICT, the language. Its use is illustrated through modeling a number of benchmark examples. The paper continues with a description of a prototype system within which such models may be interpreted. The paper concludes with a description of a sample run of this interpreter showing how a problem modeled as such is typically solved.展开更多
This research develops a solution method for project scheduling represented by a max-plus-linear (MPL) form. Max-plus-linear representation is an approach to model and analyze a class of discrete-event systems, in whi...This research develops a solution method for project scheduling represented by a max-plus-linear (MPL) form. Max-plus-linear representation is an approach to model and analyze a class of discrete-event systems, in which the behavior of a target system is represented by linear equations in max-plus algebra. Several types of MPL equations can be reduced to a constraint satisfaction problem (CSP) for mixed integer programming. The resulting formulation is flexible and easy-to-use for project scheduling;for example, we can obtain the earliest output times, latest task-starting times, and latest input times using an MPL form. We also develop a key method for identifying critical tasks under the framework of CSP. The developed methods are validated through a numerical example.展开更多
This study presents a decision-support tool for preliminary design of a horizontal wind turbine system. The function of this tool is to assist the various actors in making decisions about choices inherent to their act...This study presents a decision-support tool for preliminary design of a horizontal wind turbine system. The function of this tool is to assist the various actors in making decisions about choices inherent to their activities in the field of wind energy. Wind turbine cost and site characteristics are taken into account in the used models which are mainly based on the engineering knowledge. The present tool uses a constraint-modelling technique in combination with a CSP solver (numerical CSPs which are based on an arithmetic interval). In this way, it generates solutions and automatically performs the concept selection and costing of a given wind turbine. The data generated by the tool and required for decision making are: the quality index of solution (wind turbine), the amount of energy produced, the total cost of the wind turbine and the design variables which define the architecture of the wind turbine system. When applied to redesign a standard wind turbine in adequacy with a given site, the present tool proved both its ability to implement constraint modelling and its usefulness in conducting an appraisal.展开更多
基于角色的协同RBC(Role-Based Collaboration)是一套研究角色及它们之间复杂关系的方法、理论和技术。在RBC中,群组角色分配GRA(Group Role Assignment)既是一个关键问题,也是一个难题。已有许多研究探讨了基于Q(Qualification)矩阵来...基于角色的协同RBC(Role-Based Collaboration)是一套研究角色及它们之间复杂关系的方法、理论和技术。在RBC中,群组角色分配GRA(Group Role Assignment)既是一个关键问题,也是一个难题。已有许多研究探讨了基于Q(Qualification)矩阵来处理GRA问题,但仅利用Q矩阵难以描述问题中的复杂约束关系。因此,将约束集(Constraint)引进E-CARGO模型,提出了带约束的EC-CARGO模型,研究了RBC、GRA、SAT(SATisfaction)和CSP(Constraint Satisfaction Problem)之间的联系,建立了RBC-GRA-SAT-CSP问题求解转换关系;提出应用EC-CARGO模型求解经典CSP约束满足问题的方法,进而描述了应用GRA求解CSP约束满足问题的通用框架。最后以N皇后问题为例,验证了通过GRA的约束指派求解CSP问题的有效性。展开更多
基金This work was supported by Lebanese National Council for Scientific Research.
文摘The past decade witnessed rapid development of constraint satisfaction technologies, where algorithms are now able to cope with larger and harder problems. However, owing to the fact that constraints are inherently declarative, attention is quickly turning toward developing high-level programming languages within which such problems can be modeled and also solved. Along these lines, this paper presents DEPICT, the language. Its use is illustrated through modeling a number of benchmark examples. The paper continues with a description of a prototype system within which such models may be interpreted. The paper concludes with a description of a sample run of this interpreter showing how a problem modeled as such is typically solved.
文摘This research develops a solution method for project scheduling represented by a max-plus-linear (MPL) form. Max-plus-linear representation is an approach to model and analyze a class of discrete-event systems, in which the behavior of a target system is represented by linear equations in max-plus algebra. Several types of MPL equations can be reduced to a constraint satisfaction problem (CSP) for mixed integer programming. The resulting formulation is flexible and easy-to-use for project scheduling;for example, we can obtain the earliest output times, latest task-starting times, and latest input times using an MPL form. We also develop a key method for identifying critical tasks under the framework of CSP. The developed methods are validated through a numerical example.
文摘This study presents a decision-support tool for preliminary design of a horizontal wind turbine system. The function of this tool is to assist the various actors in making decisions about choices inherent to their activities in the field of wind energy. Wind turbine cost and site characteristics are taken into account in the used models which are mainly based on the engineering knowledge. The present tool uses a constraint-modelling technique in combination with a CSP solver (numerical CSPs which are based on an arithmetic interval). In this way, it generates solutions and automatically performs the concept selection and costing of a given wind turbine. The data generated by the tool and required for decision making are: the quality index of solution (wind turbine), the amount of energy produced, the total cost of the wind turbine and the design variables which define the architecture of the wind turbine system. When applied to redesign a standard wind turbine in adequacy with a given site, the present tool proved both its ability to implement constraint modelling and its usefulness in conducting an appraisal.