In consultative committee for space data systems(CCSDS) file delivery protocol(CFDP) recommendation of reliable transmission,there are no detail transmission procedure and delay calculation of prompted negative ac...In consultative committee for space data systems(CCSDS) file delivery protocol(CFDP) recommendation of reliable transmission,there are no detail transmission procedure and delay calculation of prompted negative acknowledge and asynchronous negative acknowledge models.CFDP is designed to provide data and storage management,story and forward,custody transfer and reliable end-to-end delivery over deep space characterized by huge latency,intermittent link,asymmetric bandwidth and big bit error rate(BER).Four reliable transmission models are analyzed and an expected file-delivery time is calculated with different trans-mission rates,numbers and sizes of packet data units,BERs and frequencies of external events,etc.By comparison of four CFDP models,the requirement of BER for typical missions in deep space is obtained and rules of choosing CFDP models under different uplink state informations are given,which provides references for protocol models selection,utilization and modification.展开更多
Multispectral time delay and integration charge coupled device (TDICCD) image compression requires a low- complexity encoder because it is usually completed on board where the energy and memory are limited. The Cons...Multispectral time delay and integration charge coupled device (TDICCD) image compression requires a low- complexity encoder because it is usually completed on board where the energy and memory are limited. The Consultative Committee for Space Data Systems (CCSDS) has proposed an image data compression (CCSDS-IDC) algorithm which is so far most widely implemented in hardware. However, it cannot reduce spectral redundancy in mukispectral images. In this paper, we propose a low-complexity improved CCSDS-IDC (ICCSDS-IDC)-based distributed source coding (DSC) scheme for multispectral TDICCD image consisting of a few bands. Our scheme is based on an ICCSDS-IDC approach that uses a bit plane extractor to parse the differences in the original image and its wavelet transformed coefficient. The output of bit plane extractor will be encoded by a first order entropy coder. Low-density parity-check-based Slepian-Wolf (SW) coder is adopted to implement the DSC strategy. Experimental results on space multispectral TDICCD images show that the proposed scheme significantly outperforms the CCSDS-IDC-based coder in each band.展开更多
Deep space communication has its own features such as long propagation delays,heavy noise,asymmetric link rates,and intermittent connectivity in space,therefore TCP/IP protocol cannot perform as well as it does in ter...Deep space communication has its own features such as long propagation delays,heavy noise,asymmetric link rates,and intermittent connectivity in space,therefore TCP/IP protocol cannot perform as well as it does in terrestrial communications.Accordingly,the Consultative Committee for Space Data Systems(CCSDS) developed CCSDS File Delivery Protocol(CFDP),which sets standards of efficient file delivery service capable of transferring files to and from mass memory located in the space segment.In CFDP,four optional acknowledge modes are supported to make the communication more reliable.In this paper,we gave a general introduction of typical communication process in CFDP and analysis of its four Negative Acknowledgement(NAK) modes on the respect of file delivery delay and times of retransmission.We found out that despite the shortest file delivery delay,immediate NAK mode suffers from the problem that frequent retransmission may probably lead to network congestion.Thus,we proposed a new mode,the error counter-based NAK mode.By simulation of the case focused on the link between a deep space probe on Mars and a ter-restrial station on Earth,we concluded that error counter-based NAK mode has successfully reduced the retransmission times at negligible cost of certain amount of file delivery delay.展开更多
The well-known CCSDS(consultative committee for space data systems) LDPC(low density parity check) code for near-earth applications is discussed and used for a case study of Mc Eliece system. First, a data error is pi...The well-known CCSDS(consultative committee for space data systems) LDPC(low density parity check) code for near-earth applications is discussed and used for a case study of Mc Eliece system. First, a data error is picked out with the CCSDS LDPC code. The problem with its generator matrix is illustrated and overcome by a shortened code with some middle code bits deleted. In correspondence, its parity check matrix is also revised with the new quasi-cyclic(QC)-LDPC code. Second, a fast decoding scheme for general QC-LDPC codes is proposed based on flipping bits and fetching words. Besides, a lightweight CCSDS LDPC code based Mc Eliece system can be set up with such codes. The repaired CCSDS LDPC code is supposed to be still useful for communications and storages, and the normalized decoding algorithm is also efficient for general QC-LDPC codes.展开更多
基金supported by the National Natural Science Fandation of China (6067208960772075)
文摘In consultative committee for space data systems(CCSDS) file delivery protocol(CFDP) recommendation of reliable transmission,there are no detail transmission procedure and delay calculation of prompted negative acknowledge and asynchronous negative acknowledge models.CFDP is designed to provide data and storage management,story and forward,custody transfer and reliable end-to-end delivery over deep space characterized by huge latency,intermittent link,asymmetric bandwidth and big bit error rate(BER).Four reliable transmission models are analyzed and an expected file-delivery time is calculated with different trans-mission rates,numbers and sizes of packet data units,BERs and frequencies of external events,etc.By comparison of four CFDP models,the requirement of BER for typical missions in deep space is obtained and rules of choosing CFDP models under different uplink state informations are given,which provides references for protocol models selection,utilization and modification.
基金supported by the National High Technology Research and Development Program of China (Grant No. 863-2-5-1-13B)
文摘Multispectral time delay and integration charge coupled device (TDICCD) image compression requires a low- complexity encoder because it is usually completed on board where the energy and memory are limited. The Consultative Committee for Space Data Systems (CCSDS) has proposed an image data compression (CCSDS-IDC) algorithm which is so far most widely implemented in hardware. However, it cannot reduce spectral redundancy in mukispectral images. In this paper, we propose a low-complexity improved CCSDS-IDC (ICCSDS-IDC)-based distributed source coding (DSC) scheme for multispectral TDICCD image consisting of a few bands. Our scheme is based on an ICCSDS-IDC approach that uses a bit plane extractor to parse the differences in the original image and its wavelet transformed coefficient. The output of bit plane extractor will be encoded by a first order entropy coder. Low-density parity-check-based Slepian-Wolf (SW) coder is adopted to implement the DSC strategy. Experimental results on space multispectral TDICCD images show that the proposed scheme significantly outperforms the CCSDS-IDC-based coder in each band.
文摘Deep space communication has its own features such as long propagation delays,heavy noise,asymmetric link rates,and intermittent connectivity in space,therefore TCP/IP protocol cannot perform as well as it does in terrestrial communications.Accordingly,the Consultative Committee for Space Data Systems(CCSDS) developed CCSDS File Delivery Protocol(CFDP),which sets standards of efficient file delivery service capable of transferring files to and from mass memory located in the space segment.In CFDP,four optional acknowledge modes are supported to make the communication more reliable.In this paper,we gave a general introduction of typical communication process in CFDP and analysis of its four Negative Acknowledgement(NAK) modes on the respect of file delivery delay and times of retransmission.We found out that despite the shortest file delivery delay,immediate NAK mode suffers from the problem that frequent retransmission may probably lead to network congestion.Thus,we proposed a new mode,the error counter-based NAK mode.By simulation of the case focused on the link between a deep space probe on Mars and a ter-restrial station on Earth,we concluded that error counter-based NAK mode has successfully reduced the retransmission times at negligible cost of certain amount of file delivery delay.
基金Supported by the Guangzhou Innovation Leading Team Program (201909010008)。
文摘The well-known CCSDS(consultative committee for space data systems) LDPC(low density parity check) code for near-earth applications is discussed and used for a case study of Mc Eliece system. First, a data error is picked out with the CCSDS LDPC code. The problem with its generator matrix is illustrated and overcome by a shortened code with some middle code bits deleted. In correspondence, its parity check matrix is also revised with the new quasi-cyclic(QC)-LDPC code. Second, a fast decoding scheme for general QC-LDPC codes is proposed based on flipping bits and fetching words. Besides, a lightweight CCSDS LDPC code based Mc Eliece system can be set up with such codes. The repaired CCSDS LDPC code is supposed to be still useful for communications and storages, and the normalized decoding algorithm is also efficient for general QC-LDPC codes.