The efforts to further reduce fuel consumption of vehicles equipped with a pushbelt type Continuously Variable Transmission(CVT) focus on different sources of loss.In this paper the magnitude of these losses and their...The efforts to further reduce fuel consumption of vehicles equipped with a pushbelt type Continuously Variable Transmission(CVT) focus on different sources of loss.In this paper the magnitude of these losses and their potential for reduction is described.Inside the CVT,the variator,its control strategy and the hydraulic actuation circuit can be distinguished as the main potentials.A major opportunity is offered by a new control strategy that takes the actual slip between belt and pulley as the control parameter.The resulting decrease of clamping forces on the pushbelt leads to a reduction of variator and actuation losses.Further potential is found in the hydraulic actuation circuit by an improved tuning of the power supply to the actual power requirement.Outside the CVT additional potential is found in start-stop functionality as supported by measures inside the transmission.The paper describes the theoretical background as well as practical fuel savings of up to 5.5% that were obtained in tests on vehicle level.Slip control adds an inherent robustness to the operation of the pushbelt and opens up the fuel saving potential of the CVT thus reinforcing its position as the benchmark for the near future.展开更多
Electric submersible pumps account for a considerable proportion in the development of the Bohai Oilfield. Improving the system efficiency of the electric submersible pump wells, ensuring that the units operate in the...Electric submersible pumps account for a considerable proportion in the development of the Bohai Oilfield. Improving the system efficiency of the electric submersible pump wells, ensuring that the units operate in the high-efficiency zone, is essential. Analysis shows that the efficiency of the electric submersible pump system depends on the wear and tear of each component of the submersible pump equipment, the setting of operational parameters, and more importantly, the production status and daily management level of the oil well. Therefore, improving the structural performance of the submersible pump product, optimizing the parameters setting of the oil well, strengthening daily management, establishing a scientific management system, and improving the production management process and system can effectively improve the production efficiency and economic benefits of the oil well, and further achieve the goal of energy saving and emission reduction. In addition, it is necessary to actively promote the concept and technology of energy saving and emission reduction, encourage oilfield enterprises to explore effective measures to reduce the energy consumption of the electric submersible pump system by strengthening the scientific management system, and achieve a green, low-carbon, and high-quality development of oilfield production to achieve the unity of economic benefits, social benefits, and environmental benefits. This article applies the above measures in the P oilfield to achieve energy optimization of submersible electric pump systems, reducing the daily power consumption of single well submersible electric pump systems by 371 kWh per day, increasing the submersible electric pump's lifespan by 200 days, generating considerable project benefits.展开更多
As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud...As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.展开更多
The satellite transponder is a widely used module in satellite missions, and the most concerned issue is to reduce the noise of the transferred signal. Otherwise, the telemetry signal will be polluted by the noise con...The satellite transponder is a widely used module in satellite missions, and the most concerned issue is to reduce the noise of the transferred signal. Otherwise, the telemetry signal will be polluted by the noise contained in the transferred signal, and the additional power will be consumed. Therefore, a method based on wavelet packet de-noising (WPD) is introduced. Compared with other techniques, there are two features making WPD more suit- able to be applied to satellite transponders: one is the capability to deal with time-varying signals without any priori information of the input signals; the other is the capability to reduce the noise in band, even if the noise overlaps with signals in the frequency domain, which provides a great de-noising performance especially for wideband signals. Besides, an oscillation detector and an av- eraging filter are added to decrease the partial oscillation caused by the thresholding process of WPD. Simulation results show that the proposed algorithm can reduce more noises and make less distortions of the signals than other techniques. In addition, up to 12 dB additional power consumption can be reduced at -10 dB signal-to-noise ratio (SNR).展开更多
Platinum catalyst gauzes have been in use since the moment of development of the process of catalyst oxidation of ammonia for production of nitric acid or hydrocyanic acid.Catalyst gauzes are usually made of platinum ...Platinum catalyst gauzes have been in use since the moment of development of the process of catalyst oxidation of ammonia for production of nitric acid or hydrocyanic acid.Catalyst gauzes are usually made of platinum or its alloys with rhodium and palladium.These precious metals have remarkable properties that make them ideal catalysts for acceleration of the ammonia/oxygen reaction.In 2008,OJSC "SIC 'Supermetal'" and Umicore AG&Co.KG launched a production line for Pt-alloy-based catalyst systems to be used for ammonia oxidation in the production of weak nitric acid.Catalyst systems consist of a pack of catalyst gauzes and a pack of catchment gauzes,which are made using flat-bed knitting machines and wire-cloth looms.Today,up-to-date catalyst systems MKSprecise TM are being manufactured,the basic advantages of which are an individual structure of gauzes and composition of the material,which allows to define precisely the position of each gauze in the catalyst pack,a high activity of the catalyst pack,direct catching of platinum and rhodium in the catalyst system,and a reasonable combination of single-and multilayer types of gauzes.This makes it possible to vary the configuration of the catalyst and select an optimum composition of the system to ensure the maximum efficiency of the ammonia oxidation process.We also produce the catchment systems that allow to find the best decision from the economic point view for each individual case.展开更多
The influence of ammonia and Brown gas injection on the iron ore sintering characteristics was explored through sintering pot experiments based on biochar substitution to increase biochar substitution proportion and r...The influence of ammonia and Brown gas injection on the iron ore sintering characteristics was explored through sintering pot experiments based on biochar substitution to increase biochar substitution proportion and reduce fossil energy consumption.By dividing the high-temperature stage of the sintering bed,the heating rate and cooling rate were calculated,and the reasons for poor sintering quality under a high biochar substitution ratio were explored.The results showed that under the 40%biochar substitution ratio,the cooling rate of the sintering bed significantly increased,the high-temperature duration time was short,and the sintering quality deteriorated severely.Additional injection of 0.5–1%vol ammonia or 1–2%vol Brown gas can reduce the cooling rate,prolong the high-temperature duration,and optimize the sintering quality.Based on 1%vol ammonia or 2%vol Brown gas injection,reducing the proportion of biochar with equal calorific value further increases the sintering comprehensive index,which means that using 1%vol ammonia or 2%vol Brown gas injection to assist sintering can reduce the proportion of coke usage to 60%,while the proportion of biochar substitution is 33.76%and 32.47%,respectively.The research results provide an effective solution for low-carbon sintering.展开更多
文摘The efforts to further reduce fuel consumption of vehicles equipped with a pushbelt type Continuously Variable Transmission(CVT) focus on different sources of loss.In this paper the magnitude of these losses and their potential for reduction is described.Inside the CVT,the variator,its control strategy and the hydraulic actuation circuit can be distinguished as the main potentials.A major opportunity is offered by a new control strategy that takes the actual slip between belt and pulley as the control parameter.The resulting decrease of clamping forces on the pushbelt leads to a reduction of variator and actuation losses.Further potential is found in the hydraulic actuation circuit by an improved tuning of the power supply to the actual power requirement.Outside the CVT additional potential is found in start-stop functionality as supported by measures inside the transmission.The paper describes the theoretical background as well as practical fuel savings of up to 5.5% that were obtained in tests on vehicle level.Slip control adds an inherent robustness to the operation of the pushbelt and opens up the fuel saving potential of the CVT thus reinforcing its position as the benchmark for the near future.
文摘Electric submersible pumps account for a considerable proportion in the development of the Bohai Oilfield. Improving the system efficiency of the electric submersible pump wells, ensuring that the units operate in the high-efficiency zone, is essential. Analysis shows that the efficiency of the electric submersible pump system depends on the wear and tear of each component of the submersible pump equipment, the setting of operational parameters, and more importantly, the production status and daily management level of the oil well. Therefore, improving the structural performance of the submersible pump product, optimizing the parameters setting of the oil well, strengthening daily management, establishing a scientific management system, and improving the production management process and system can effectively improve the production efficiency and economic benefits of the oil well, and further achieve the goal of energy saving and emission reduction. In addition, it is necessary to actively promote the concept and technology of energy saving and emission reduction, encourage oilfield enterprises to explore effective measures to reduce the energy consumption of the electric submersible pump system by strengthening the scientific management system, and achieve a green, low-carbon, and high-quality development of oilfield production to achieve the unity of economic benefits, social benefits, and environmental benefits. This article applies the above measures in the P oilfield to achieve energy optimization of submersible electric pump systems, reducing the daily power consumption of single well submersible electric pump systems by 371 kWh per day, increasing the submersible electric pump's lifespan by 200 days, generating considerable project benefits.
基金This work was financially supported by the National Natural Science Foundation of China(52074089 and 52104064)Natural Science Foundation of Heilongjiang Province of China(LH2019E019).
文摘As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.
基金supported by the National Natural Science Foundation of China(61401389)
文摘The satellite transponder is a widely used module in satellite missions, and the most concerned issue is to reduce the noise of the transferred signal. Otherwise, the telemetry signal will be polluted by the noise contained in the transferred signal, and the additional power will be consumed. Therefore, a method based on wavelet packet de-noising (WPD) is introduced. Compared with other techniques, there are two features making WPD more suit- able to be applied to satellite transponders: one is the capability to deal with time-varying signals without any priori information of the input signals; the other is the capability to reduce the noise in band, even if the noise overlaps with signals in the frequency domain, which provides a great de-noising performance especially for wideband signals. Besides, an oscillation detector and an av- eraging filter are added to decrease the partial oscillation caused by the thresholding process of WPD. Simulation results show that the proposed algorithm can reduce more noises and make less distortions of the signals than other techniques. In addition, up to 12 dB additional power consumption can be reduced at -10 dB signal-to-noise ratio (SNR).
文摘Platinum catalyst gauzes have been in use since the moment of development of the process of catalyst oxidation of ammonia for production of nitric acid or hydrocyanic acid.Catalyst gauzes are usually made of platinum or its alloys with rhodium and palladium.These precious metals have remarkable properties that make them ideal catalysts for acceleration of the ammonia/oxygen reaction.In 2008,OJSC "SIC 'Supermetal'" and Umicore AG&Co.KG launched a production line for Pt-alloy-based catalyst systems to be used for ammonia oxidation in the production of weak nitric acid.Catalyst systems consist of a pack of catalyst gauzes and a pack of catchment gauzes,which are made using flat-bed knitting machines and wire-cloth looms.Today,up-to-date catalyst systems MKSprecise TM are being manufactured,the basic advantages of which are an individual structure of gauzes and composition of the material,which allows to define precisely the position of each gauze in the catalyst pack,a high activity of the catalyst pack,direct catching of platinum and rhodium in the catalyst system,and a reasonable combination of single-and multilayer types of gauzes.This makes it possible to vary the configuration of the catalyst and select an optimum composition of the system to ensure the maximum efficiency of the ammonia oxidation process.We also produce the catchment systems that allow to find the best decision from the economic point view for each individual case.
基金supported by National Natural Science Foundation of China(grant No.52036008).
文摘The influence of ammonia and Brown gas injection on the iron ore sintering characteristics was explored through sintering pot experiments based on biochar substitution to increase biochar substitution proportion and reduce fossil energy consumption.By dividing the high-temperature stage of the sintering bed,the heating rate and cooling rate were calculated,and the reasons for poor sintering quality under a high biochar substitution ratio were explored.The results showed that under the 40%biochar substitution ratio,the cooling rate of the sintering bed significantly increased,the high-temperature duration time was short,and the sintering quality deteriorated severely.Additional injection of 0.5–1%vol ammonia or 1–2%vol Brown gas can reduce the cooling rate,prolong the high-temperature duration,and optimize the sintering quality.Based on 1%vol ammonia or 2%vol Brown gas injection,reducing the proportion of biochar with equal calorific value further increases the sintering comprehensive index,which means that using 1%vol ammonia or 2%vol Brown gas injection to assist sintering can reduce the proportion of coke usage to 60%,while the proportion of biochar substitution is 33.76%and 32.47%,respectively.The research results provide an effective solution for low-carbon sintering.