The effect of involute contact ratio on the torsional vibration behavior ofspur gear-pair is studied analytically through a mass-spring model. The tooth stiffness in model notonly has a relation with time, as many pri...The effect of involute contact ratio on the torsional vibration behavior ofspur gear-pair is studied analytically through a mass-spring model. The tooth stiffness in model notonly has a relation with time, as many prior studies presented, but, more important, with involutecontact ratio (ICR) as well. The ICR embodies its impact on the spur gear's dynamic performancethrough changing the proportion of tooth stiffness when there are n+1 teeth in contact to toothstiffness when there are n teeth in contact. A couple of curves about impact of ICR on the gear'sdynamic performance are presented, and they clearly demonstrate that the model can accuratelydescribe the effects of ICR on dynamic transmission error. Finally, some conclusions useful toreduce vibration and noise of gear-pair are proposed.展开更多
Common definition and calculating expressions of end-surface contact ratiofor all type of gears are put forward, and with calculation expressions for involute gears,micro-segments profile gears, and sine-curved profil...Common definition and calculating expressions of end-surface contact ratiofor all type of gears are put forward, and with calculation expressions for involute gears,micro-segments profile gears, and sine-curved profile gears being discussed. The end-surface contactratio of gears is defined as the ratio of the action angle (the rotation angle of gear from gear-into gear-out for one pair of teeth) to the rotation angle per pitch (or central angle per tooth).According to the theory of gearing, equation of the meshing line can be deduced from the toothprofiles of basic rack. Having obtained the equation of the meshing line, and being given theaddendum outline of the gears, the contact ratio can be calculated with the calculation expressions.For the involute gears, this definition has same effect as the well-known definition: ratio of thecontact line to the base pitch. This definition of contact ratio is also suitable to othernon-involute gears, such as micro-segments profile gears, sine-curved profile gears, and can givemore reliable results.展开更多
Continuously variable transmission(CVT)of noncircular gear has the technical advantages of large bearing capacity and high transmission efficiency.The key technology of CVT with noncircular gear has been broken throug...Continuously variable transmission(CVT)of noncircular gear has the technical advantages of large bearing capacity and high transmission efficiency.The key technology of CVT with noncircular gear has been broken through some countries,and is in the stage of deep application research.Although the characteristics and design methods of noncircular gear pairs have been continuously studied in China,the noncircular gear CVT is still in the preliminary exploration and research stage.The linear functional noncircular gear pair,whose transmission ratio is a linear function in the working section,to realize continuously variable transmission was the research object in this paper.According to the required transmission ratio in the working section,the transmission ratio function in the non-working section was constructed by using a polynomial.And then the influence of pitch curve parameters in the working section on which in the non-working section was also analyzed to obtain the pitch curve suitable for transmission of this gear pair.In addition,for improving the stability and bearing capacity of gear transmission,the noncircular gear pair transmission with high contact ratio was designed.Furthermore,the accurate value of the contact tooth length was calculated based on the gear principle and the characteristics of the involute tooth profile,from this the contact tooth length error was calculated by comparing the accurate value with its actual value obtained by the rolling experiment.Finally,an indirect method to verify the contact ratio by detecting the contact length error of the tooth profile was proposed.展开更多
Image photoplethysmography can realize low-cost and easy-to-operate non-contact heart rate detection from the facial video, and effectively overcome the limitations of traditional contact method in daily vital sign mo...Image photoplethysmography can realize low-cost and easy-to-operate non-contact heart rate detection from the facial video, and effectively overcome the limitations of traditional contact method in daily vital sign monitoring. However, it is hard to obtain more accurate heart rate detection values under the conditions of subject’s facial movement, weak ambient light intensity and long detection distance, etc. In this article, a non-contact heart rate detection method based on face tracking is proposed, which can effectively improve the accuracy of non-contact heart rate detection method in practical application. The corner tracker algorithm is used to track the human face to reduce the motion artifact caused by the movement of the subject’s face and enhance the use value of the signal. And the maximum ratio combining algorithm is used to weight the pixel space pulse wave signal in the facial region of interest to improve the pulse wave extraction accuracy. We analyzed the facial images collected under different experimental distances and action states. This proposed method significantly reduces the error rate compared with the independent component analysis method. After theoretical analysis and experimental verification, this method effectively reduces the error rate under different experimental variables and has good consistency with the heart rate value collected by the medical physiological vest. This method will help to improve the accuracy of non-contact heart rate detection in complex environments.展开更多
The service condition determines the Roiling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF t...The service condition determines the Roiling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF testing of thermal spray coatings under various condition services is considerable; it is generally difficult to synthesize all of the result to obtain a comprehensive understanding of the parameters which has a great effect on a thermal spray coating's resistance of RCF. The effects of service conditions(lubrication states, contact stresses, revolve speed, and slip ratio) on the changing of thermal spray coatings' contact fatigue lifetime is introduced systematically. The effects of different service condition on RCF failure mechanism of thermal spray coating from the change of material structure integrity are also summarized. Moreover, In order to enhance the RCF performance, the parameter optimal design formula of service condition and material structure integrity is proposed based on the effect of service condition on thermal spray coatings' contact fatigue lifetime and RCF failure mechanism. The shortage of available literature and the forecast focus in future researches are discussed based on available research. The explicit result of RCF lifetime law and parameter optimal design formula in term of lubrication states, contact stresses, revolve speed, and slip ratio, is significant to improve the RCF performance on the engineering application.展开更多
A multicomponent multiphase(MCMP) pseudopotential lattice Boltzmann(LB) model with large liquid–gas density ratios is proposed for simulating the wetting phenomena. In the proposed model, two layers of neighborin...A multicomponent multiphase(MCMP) pseudopotential lattice Boltzmann(LB) model with large liquid–gas density ratios is proposed for simulating the wetting phenomena. In the proposed model, two layers of neighboring nodes are adopted to calculate the fluid–fluid cohesion force with higher isotropy order. In addition, the different-time-step method is employed to calculate the processes of particle propagation and collision for the two fluid components with a large pseudoparticle mass contrast. It is found that the spurious current is remarkably reduced by employing the higher isotropy order calculation of the fluid–fluid cohesion force. The maximum spurious current appearing at the phase interfaces is evidently influenced by the magnitudes of fluid–fluid and fluid–solid interaction strengths, but weakly affected by the time step ratio.The density ratio analyses show that the liquid–gas density ratio is dependent on both the fluid–fluid interaction strength and the time step ratio. For the liquid–gas flow simulations without solid phase, the maximum liquid–gas density ratio achieved by the present model is higher than 1000:1. However, the obtainable maximum liquid–gas density ratio in the solid–liquid–gas system is lower. Wetting phenomena of droplets contacting smooth/rough solid surfaces and the dynamic process of liquid movement in a capillary tube are simulated to validate the proposed model in different solid–liquid–gas coexisting systems. It is shown that the simulated intrinsic contact angles of droplets on smooth surfaces are in good agreement with those predicted by the constructed LB formula that is related to Young's equation. The apparent contact angles of droplets on rough surfaces compare reasonably well with the predictions of Cassie's law. For the simulation of liquid movement in a capillary tube, the linear relation between the liquid–gas interface position and simulation time is observed, which is identical to the analytical prediction. The simulation results regarding the wetting phenomena of droplets on smooth/rough surfaces and the dynamic process of liquid movement in the capillary tube demonstrate the quantitative capability of the proposed model.展开更多
Due to the uneven seabed and heaving of soil during pumping,incomplete soil plugs may occur during the installation of bucket foundations,and the impacts on the bearing capacities of bucket foundations need to be eval...Due to the uneven seabed and heaving of soil during pumping,incomplete soil plugs may occur during the installation of bucket foundations,and the impacts on the bearing capacities of bucket foundations need to be evaluated.In this paper,the contact ratio(the ratio of the top diameter of the soil plug to the diameter of the bucket)and the soil plug ratio(the ratio of the soil heave height to the skirt height)are defined to describe the shape and size of the incomplete soil plug.Then,finite element models are established to investigate the bearing capacities of bucket foundations with incomplete soil plugs and the influences of the contact ratios,and the soil plug ratios on the bearing capacities are analyzed.The results show that the vertical bearing capacity of bucket foundations in homogeneous soil continuously improves with the increase of the contact ratio.However,in normally consolidated soil,the vertical bearing capacity barely changes when the contact ratio is smaller than 0.75,while the bearing capacity suddenly increases when the contact ratio increases to 1 due to the change of failure mode.The contact ratio hardly affects the horizontal bearing capacity of bucket foundations.Moreover,the moment bearing capacity improves with the increase of the contact ratio for small aspect ratios,but hardly varies with increasing contact ratio for aspect ratios larger than 0.5.Consequently,the reduction coefficient method is proposed based on this analysis to calculate the bearing capacities of bucket foundations considering the influence of incomplete soil plugs.The comparison results show that the proposed reduction coefficient method can be used to evaluate the influences of incomplete soil plug on the bearing capacities of bucket foundations.展开更多
文摘The effect of involute contact ratio on the torsional vibration behavior ofspur gear-pair is studied analytically through a mass-spring model. The tooth stiffness in model notonly has a relation with time, as many prior studies presented, but, more important, with involutecontact ratio (ICR) as well. The ICR embodies its impact on the spur gear's dynamic performancethrough changing the proportion of tooth stiffness when there are n+1 teeth in contact to toothstiffness when there are n teeth in contact. A couple of curves about impact of ICR on the gear'sdynamic performance are presented, and they clearly demonstrate that the model can accuratelydescribe the effects of ICR on dynamic transmission error. Finally, some conclusions useful toreduce vibration and noise of gear-pair are proposed.
文摘Common definition and calculating expressions of end-surface contact ratiofor all type of gears are put forward, and with calculation expressions for involute gears,micro-segments profile gears, and sine-curved profile gears being discussed. The end-surface contactratio of gears is defined as the ratio of the action angle (the rotation angle of gear from gear-into gear-out for one pair of teeth) to the rotation angle per pitch (or central angle per tooth).According to the theory of gearing, equation of the meshing line can be deduced from the toothprofiles of basic rack. Having obtained the equation of the meshing line, and being given theaddendum outline of the gears, the contact ratio can be calculated with the calculation expressions.For the involute gears, this definition has same effect as the well-known definition: ratio of thecontact line to the base pitch. This definition of contact ratio is also suitable to othernon-involute gears, such as micro-segments profile gears, sine-curved profile gears, and can givemore reliable results.
基金Supported by National Natural Science Foundation of China(Grant No.51675060)Equipment Pre-Research Project(Grant No.3010519404)+2 种基金Chongqing University Graduate Student Research Innovation Project(Grant No.CYB19011)National Natural Science Foundation of China(Grant No.U1864210)Scientific Research Foundation of Binzhou University(Grant No.2022Y2).
文摘Continuously variable transmission(CVT)of noncircular gear has the technical advantages of large bearing capacity and high transmission efficiency.The key technology of CVT with noncircular gear has been broken through some countries,and is in the stage of deep application research.Although the characteristics and design methods of noncircular gear pairs have been continuously studied in China,the noncircular gear CVT is still in the preliminary exploration and research stage.The linear functional noncircular gear pair,whose transmission ratio is a linear function in the working section,to realize continuously variable transmission was the research object in this paper.According to the required transmission ratio in the working section,the transmission ratio function in the non-working section was constructed by using a polynomial.And then the influence of pitch curve parameters in the working section on which in the non-working section was also analyzed to obtain the pitch curve suitable for transmission of this gear pair.In addition,for improving the stability and bearing capacity of gear transmission,the noncircular gear pair transmission with high contact ratio was designed.Furthermore,the accurate value of the contact tooth length was calculated based on the gear principle and the characteristics of the involute tooth profile,from this the contact tooth length error was calculated by comparing the accurate value with its actual value obtained by the rolling experiment.Finally,an indirect method to verify the contact ratio by detecting the contact length error of the tooth profile was proposed.
文摘Image photoplethysmography can realize low-cost and easy-to-operate non-contact heart rate detection from the facial video, and effectively overcome the limitations of traditional contact method in daily vital sign monitoring. However, it is hard to obtain more accurate heart rate detection values under the conditions of subject’s facial movement, weak ambient light intensity and long detection distance, etc. In this article, a non-contact heart rate detection method based on face tracking is proposed, which can effectively improve the accuracy of non-contact heart rate detection method in practical application. The corner tracker algorithm is used to track the human face to reduce the motion artifact caused by the movement of the subject’s face and enhance the use value of the signal. And the maximum ratio combining algorithm is used to weight the pixel space pulse wave signal in the facial region of interest to improve the pulse wave extraction accuracy. We analyzed the facial images collected under different experimental distances and action states. This proposed method significantly reduces the error rate compared with the independent component analysis method. After theoretical analysis and experimental verification, this method effectively reduces the error rate under different experimental variables and has good consistency with the heart rate value collected by the medical physiological vest. This method will help to improve the accuracy of non-contact heart rate detection in complex environments.
基金Supported by Distinguished Young Scholars of National Natural Science Foundation of China(Grant No.51125023)National Basic Research Program of China(973program,Grant No.2011CB013405)+1 种基金National Natural Science Foundation of China(Grant Nos.5127552651275105)Fundamental Research Funds for the Central Universities(Grant Nos.HEUCF20130910003,201403017)
文摘The service condition determines the Roiling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF testing of thermal spray coatings under various condition services is considerable; it is generally difficult to synthesize all of the result to obtain a comprehensive understanding of the parameters which has a great effect on a thermal spray coating's resistance of RCF. The effects of service conditions(lubrication states, contact stresses, revolve speed, and slip ratio) on the changing of thermal spray coatings' contact fatigue lifetime is introduced systematically. The effects of different service condition on RCF failure mechanism of thermal spray coating from the change of material structure integrity are also summarized. Moreover, In order to enhance the RCF performance, the parameter optimal design formula of service condition and material structure integrity is proposed based on the effect of service condition on thermal spray coatings' contact fatigue lifetime and RCF failure mechanism. The shortage of available literature and the forecast focus in future researches are discussed based on available research. The explicit result of RCF lifetime law and parameter optimal design formula in term of lubrication states, contact stresses, revolve speed, and slip ratio, is significant to improve the RCF performance on the engineering application.
基金supported by the National Natural Science Foundation of China(Grant Nos.51371051 and 51306037)the Scientific Research Foundation of Graduate School of Southeast University,China(Grant No.YBJJ1627)
文摘A multicomponent multiphase(MCMP) pseudopotential lattice Boltzmann(LB) model with large liquid–gas density ratios is proposed for simulating the wetting phenomena. In the proposed model, two layers of neighboring nodes are adopted to calculate the fluid–fluid cohesion force with higher isotropy order. In addition, the different-time-step method is employed to calculate the processes of particle propagation and collision for the two fluid components with a large pseudoparticle mass contrast. It is found that the spurious current is remarkably reduced by employing the higher isotropy order calculation of the fluid–fluid cohesion force. The maximum spurious current appearing at the phase interfaces is evidently influenced by the magnitudes of fluid–fluid and fluid–solid interaction strengths, but weakly affected by the time step ratio.The density ratio analyses show that the liquid–gas density ratio is dependent on both the fluid–fluid interaction strength and the time step ratio. For the liquid–gas flow simulations without solid phase, the maximum liquid–gas density ratio achieved by the present model is higher than 1000:1. However, the obtainable maximum liquid–gas density ratio in the solid–liquid–gas system is lower. Wetting phenomena of droplets contacting smooth/rough solid surfaces and the dynamic process of liquid movement in a capillary tube are simulated to validate the proposed model in different solid–liquid–gas coexisting systems. It is shown that the simulated intrinsic contact angles of droplets on smooth surfaces are in good agreement with those predicted by the constructed LB formula that is related to Young's equation. The apparent contact angles of droplets on rough surfaces compare reasonably well with the predictions of Cassie's law. For the simulation of liquid movement in a capillary tube, the linear relation between the liquid–gas interface position and simulation time is observed, which is identical to the analytical prediction. The simulation results regarding the wetting phenomena of droplets on smooth/rough surfaces and the dynamic process of liquid movement in the capillary tube demonstrate the quantitative capability of the proposed model.
基金financially supported by the National Science Fund for Distinguished Young Scholars of China(Grant No.51825904)the Research on the Form,Design Method and Weathering Resistance of Key Components of Novel Floating Support Structures for Offshore Photovoltaics(Grant No.2022YFB4200701).
文摘Due to the uneven seabed and heaving of soil during pumping,incomplete soil plugs may occur during the installation of bucket foundations,and the impacts on the bearing capacities of bucket foundations need to be evaluated.In this paper,the contact ratio(the ratio of the top diameter of the soil plug to the diameter of the bucket)and the soil plug ratio(the ratio of the soil heave height to the skirt height)are defined to describe the shape and size of the incomplete soil plug.Then,finite element models are established to investigate the bearing capacities of bucket foundations with incomplete soil plugs and the influences of the contact ratios,and the soil plug ratios on the bearing capacities are analyzed.The results show that the vertical bearing capacity of bucket foundations in homogeneous soil continuously improves with the increase of the contact ratio.However,in normally consolidated soil,the vertical bearing capacity barely changes when the contact ratio is smaller than 0.75,while the bearing capacity suddenly increases when the contact ratio increases to 1 due to the change of failure mode.The contact ratio hardly affects the horizontal bearing capacity of bucket foundations.Moreover,the moment bearing capacity improves with the increase of the contact ratio for small aspect ratios,but hardly varies with increasing contact ratio for aspect ratios larger than 0.5.Consequently,the reduction coefficient method is proposed based on this analysis to calculate the bearing capacities of bucket foundations considering the influence of incomplete soil plugs.The comparison results show that the proposed reduction coefficient method can be used to evaluate the influences of incomplete soil plug on the bearing capacities of bucket foundations.