A line contact model of elastic coated solids is presented based on the influence coefficients(ICs) of surface displacement and stresses of coating-substrate system and the traditional contact model. The ICs of displa...A line contact model of elastic coated solids is presented based on the influence coefficients(ICs) of surface displacement and stresses of coating-substrate system and the traditional contact model. The ICs of displacement and stresses are obtained from their corresponding frequency response functions(FRF) by using a conversion method based on fast Fourier transformation(FFT). The contact pressure and the stress field in the subsurface are obtained by employing conjugate gradient method(CGM) and discrete convolution fast Fourier transformation(DC-FFT). Comparison of the contact pressure and subsurface stresses obtained by the numerical method with the exact analytical solutions for Hertz contact is conducted, and the results show that the numerical solution has a very high accuracy and verify the validity of the contact model. The effect of the stiffness and thickness of coatings is further numerically studied. The result shows that the effects on contact pressure and contact width are opposite for hard and soft coatings and are intensified with the increase of coating thickness; the locations of crack initiation and propagation are different for soft and hard coatings; the risk of cracks and delaminations of coatings can be brought down by improving the lubrication condition or optimizing the non-dimensional parameter h/bh. This research offers a tool to numerically analyze the problem of elastic coated solids in line contact and make the blindness and randomness of trial-type coating design less.展开更多
In this paper the elastic properties of SiOx film are investigated quantitatively for local fixed point and qualitatively for overall area by atomic force acoustic microscopy (AFAM) in which the sample is vibrated a...In this paper the elastic properties of SiOx film are investigated quantitatively for local fixed point and qualitatively for overall area by atomic force acoustic microscopy (AFAM) in which the sample is vibrated at the ultrasonic frequency while the sample surface is touched and scanned with the tip contacting the sample respectively for fixed point and continuous measurements. The SiOx films on the silicon wafers are prepared by the plasma enhanced chemical vapour deposition (PECVD), The local contact stiffness of the tip-SiOx film is calculated from the contact resonance spectrum measured with the atomic force acoustic microscopy. Using the reference approach, indentation modulus of SiOx film for fixed point is obtained. The images of cantilever amplitude are also visualized and analysed when the SiOx surface is excited at a fixed frequency. The results show that the acoustic amplitude images can reflect the elastic properties of the sample.展开更多
Piezoresponse Force Spectroscopy(PFS)is a powerful technique widely used for measuring the nanoscale electromechanical coupling of the ferro-/piezo-electric materials.However,it is found that certain nonferroelectric ...Piezoresponse Force Spectroscopy(PFS)is a powerful technique widely used for measuring the nanoscale electromechanical coupling of the ferro-/piezo-electric materials.However,it is found that certain nonferroelectric materials can also generate the“hysteresis-loop-like”responses from the PFS measurements due to many other factors such as electrostatic effects.This work therefore studies the signal of the contact resonance frequency during the PFS measurements.By comparing the results from ferroelectric and non-ferroelectric materials,it is found there are distinct differences between these two types of materials in the variation of the contact resonance frequency during the PFS measurements.A momentary and sharp increase of the contact resonance frequency occurs when the domain is switched by applying the DC bias,which can be regarded as a unique characteristic for the ferroelectric materials.After analyzing the reliability and mechanism of this method,it is proposed that the contact resonance frequency variation at the coercive bias is capable to differentiate the electromechanical responses of the ferroelectric and non-ferroelectric materials during the PFS measurements.展开更多
基金Project(2013CB632305)supported by the National Basic Research Program of ChinaProject(51375108)supported by the National Natural Science Foundation of China
文摘A line contact model of elastic coated solids is presented based on the influence coefficients(ICs) of surface displacement and stresses of coating-substrate system and the traditional contact model. The ICs of displacement and stresses are obtained from their corresponding frequency response functions(FRF) by using a conversion method based on fast Fourier transformation(FFT). The contact pressure and the stress field in the subsurface are obtained by employing conjugate gradient method(CGM) and discrete convolution fast Fourier transformation(DC-FFT). Comparison of the contact pressure and subsurface stresses obtained by the numerical method with the exact analytical solutions for Hertz contact is conducted, and the results show that the numerical solution has a very high accuracy and verify the validity of the contact model. The effect of the stiffness and thickness of coatings is further numerically studied. The result shows that the effects on contact pressure and contact width are opposite for hard and soft coatings and are intensified with the increase of coating thickness; the locations of crack initiation and propagation are different for soft and hard coatings; the risk of cracks and delaminations of coatings can be brought down by improving the lubrication condition or optimizing the non-dimensional parameter h/bh. This research offers a tool to numerically analyze the problem of elastic coated solids in line contact and make the blindness and randomness of trial-type coating design less.
基金Project supported by the National Natural Science Foundation of China(Grant No.50775005)
文摘In this paper the elastic properties of SiOx film are investigated quantitatively for local fixed point and qualitatively for overall area by atomic force acoustic microscopy (AFAM) in which the sample is vibrated at the ultrasonic frequency while the sample surface is touched and scanned with the tip contacting the sample respectively for fixed point and continuous measurements. The SiOx films on the silicon wafers are prepared by the plasma enhanced chemical vapour deposition (PECVD), The local contact stiffness of the tip-SiOx film is calculated from the contact resonance spectrum measured with the atomic force acoustic microscopy. Using the reference approach, indentation modulus of SiOx film for fixed point is obtained. The images of cantilever amplitude are also visualized and analysed when the SiOx surface is excited at a fixed frequency. The results show that the acoustic amplitude images can reflect the elastic properties of the sample.
基金the financial support by Ministry of Education,Singapore,through National University of Singapore(NUS)under the Academic Research Fund(ARF)of grant number R-265-000-596-112the post-graduate scholarship provide by NUSthe support for post-doctoral research fellow from ARF of R-265-000-596-112 by Ministry of Education,Singapore.
文摘Piezoresponse Force Spectroscopy(PFS)is a powerful technique widely used for measuring the nanoscale electromechanical coupling of the ferro-/piezo-electric materials.However,it is found that certain nonferroelectric materials can also generate the“hysteresis-loop-like”responses from the PFS measurements due to many other factors such as electrostatic effects.This work therefore studies the signal of the contact resonance frequency during the PFS measurements.By comparing the results from ferroelectric and non-ferroelectric materials,it is found there are distinct differences between these two types of materials in the variation of the contact resonance frequency during the PFS measurements.A momentary and sharp increase of the contact resonance frequency occurs when the domain is switched by applying the DC bias,which can be regarded as a unique characteristic for the ferroelectric materials.After analyzing the reliability and mechanism of this method,it is proposed that the contact resonance frequency variation at the coercive bias is capable to differentiate the electromechanical responses of the ferroelectric and non-ferroelectric materials during the PFS measurements.