The migration process of the pig in oil and gas pipeline is a complex dynamic problem.During the pigging operation,the variation of friction force caused by the nonlinear contact between the sealing disc and the pipe ...The migration process of the pig in oil and gas pipeline is a complex dynamic problem.During the pigging operation,the variation of friction force caused by the nonlinear contact between the sealing disc and the pipe wall is the key factor affecting the dynamic characteristics of the pig motion.At present,the existed pigging models for predicting pigging behavior regard friction as an invariant constant.Experimental research indicates that the friction force of the pig varies with the contact force and the lubrication conditions.Therefore,the assumption that the friction force is constant cannot reflect the friction dynamic characteristics of the pig during pigging,and will also affect the accuracy of the pigging model.Exploring the variation of friction force of pig under different conditions is the basis of establishing the transient dynamic model of a pig.As a result,in this paper,a method of direct measurement of contact force between the pig and the pipeline is presented,the contact force,the friction force,as well as the friction coefficient of the pig are obtained from the experiment.Research results in this paper can help to establish a more accurate dynamic model of pig.展开更多
The current research on gear system dynamics mainly utilizes linear spring damping model to calculate the contact force between gears. However, this linear model cannot correctly describe the energy transfer process o...The current research on gear system dynamics mainly utilizes linear spring damping model to calculate the contact force between gears. However, this linear model cannot correctly describe the energy transfer process of collision that often occurs in gear system. Focus on the contact-impact events, this paper proposes an improved gear contact force model for dynamic analysis in helical gear transmission system. In this model, a new factor associated with hysteresis damping is developed for contact-impact state, whereas the traditional linear damping factor is utilized for normal meshing state. For determining the selection strategy of these two damping factors, the fundamental contact mechanics of contact-impact event a ected by supporting forces are analyzed. During this analysis, an e ect factor is proposed for evaluating the influence of supporting forces on collision. Meanwhile, a new restitution of coe cient is deduced for calculating hysteresis damping factor, which suitable for both separation and non-separation states at the end of collision. In addition, the time-varying meshing sti ness(TVMS) is obtained based on the potential energy approach and the slice theory. Finally, a dynamic analysis of a helical gear system is carried out to better understand the contact force model proposed in this paper. The analysis results show that the contribution of supporting forces to the dynamic response of contact-impact event within gear pair is important. The supporting forces and dissipative energy are the main reasons for gear system to enter a steady contact state from repeated contact-impact state. This research proposes an improved contact force model which distinguishes meshing and collision states in gear system.展开更多
A new elastic-plastic impact-contact model is proposed in this paper. By adopting the principle of minimum acceleration for elastic-plastic continue at finite deformation, and with the aid of finite difference method,...A new elastic-plastic impact-contact model is proposed in this paper. By adopting the principle of minimum acceleration for elastic-plastic continue at finite deformation, and with the aid of finite difference method, the proposed model is applied in the problem of dynamic response of a clamped thin circular plate subjected to a projectile impact centrally. The impact force history and response characteristics of the target plate is studied in detail. The theoretical predictions of the impact force and plate deflection are in good agreements with those of LDA experimental data. Linear expressions of the maximum impact force/transverse deflection versus impact velocity are given on the basis of the theoretical results.展开更多
To disclose the effect of contact force and electrode gap on the material transfer behavior of Ag-based contact material, arc-erosion tests of the Ag-4wt.%TiB2 contact material were performed for 5000 operations at 24...To disclose the effect of contact force and electrode gap on the material transfer behavior of Ag-based contact material, arc-erosion tests of the Ag-4wt.%TiB2 contact material were performed for 5000 operations at 24 V/16 A under resistive load on an electric contact material testing system. The arc energy and arc duration were investigated, the surface morphologies of eroded anode and cathode were characterized, the mass changes after arc-erosion tests were determined, and the material transfer behavior was discussed as well. The results show that contact force has a significant effect on the arc energy, arc duration and erosion morphology, but has no impact on the material transfer mode. However, electrode gap not only influences the arc energy, arc duration and surface morphology, but also changes the material transfer mode. At 1 mm, the material transfers from anode to cathode. Nevertheless, an opposite mode presents at 4 mm, which is from cathode to anode.展开更多
The spindle barrel finishing is commonly used to improve the surface integrity of the important parts of the high-end equipment while it is difficult to provide enough test artifacts for the traditional trial and erro...The spindle barrel finishing is commonly used to improve the surface integrity of the important parts of the high-end equipment while it is difficult to provide enough test artifacts for the traditional trial and error experiment to obtain the desirable processing technology.The EDEM simulation of the spindle barrel finishing can provide effective help for the process design,however,the difference between the simulation and experiment is closely related to the selection of the contact model during simulation.In this paper,simulations and experiments are conducted based on the identical apparatus and conditions to facilitate the comparison and validation between each other.Based on the Hertz contact theory,the effect of the material properties of contact objects and the relative position of the workpiece on the contact force is qualified.The expression of the correlation coefficient of the contact model is deduced.Then the formula for calculating the contact force between the barrel finishing abrasive and the workpiece that includes influence coefficient of the material properties and the relative positions is established.Finally,the contact force calculation formula is verified by changing the rotating speed.The result shows that the material correction coefficient ranges from 1.41 to 2.38,which is inversely related to the equivalent modulus E.The position correction coefficient ranges from 2.0 to 2.3.The relative error value between the calculation result and the experimental test result is from 0.58%to 14.07%.This research lay a theoretical foundation for the correction theory of the core elements of the spindle barrel finishing process.展开更多
Most existing force feedback methods are still difficult to meet the requirements of real-time force calculation in virtual assembly and operation with complex objects. In addition, there is often an assumption that t...Most existing force feedback methods are still difficult to meet the requirements of real-time force calculation in virtual assembly and operation with complex objects. In addition, there is often an assumption that the controlled objects are completely flee and the target object is only completely fixed or flee, thus, the dynamics of the kinematic chain where the controlled objects are located are neglected during the physical simulation of the product manipulation with force feedback interaction. This paper proposes a physical simulation method of product assembly and operation manipulation based on statistically learned contact force prediction model and the coupling of force feedback and dynamics. In the proposed method, based on hidden Markov model (HMM) and local weighting learning (LWL), contact force prediction model is constructed, which can estimate the contact force in real time during interaction. Based on computational load balance model, the computing resources are dynamically assigned and the dynamics integral step is optimized. In addition, smoothing process is performed to the force feedback on the synchronization points. Consequently, we can solve the coupling and synchronization problems of high-frequency feedback force servo. low-frequency dynamics solver servo and scene rendering servo, and realize highly stable and accurate force feedback in the physical simulation of product assembly and operation manipulation. This research proposes a physical simulation method of product assembly and operation manipulation.展开更多
Cold rotary forging is an advanced and complex metal forming technology with continuous local plastic deformation.Investigating the contact force between the dies and the workpiece has a great significance to improve ...Cold rotary forging is an advanced and complex metal forming technology with continuous local plastic deformation.Investigating the contact force between the dies and the workpiece has a great significance to improve the life of the dies in cold rotary forging.The purpose of this work is to reveal the contact force responses in cold rotary forging through the modelling and simulation.For this purpose,a 3D elastic-plastic dynamic explicit FE model of cold rotary forging is developed using the FE code ABAQUS/Explicit.Through the modelling and simulation,the distribution and evolution of the contact force in cold rotary forging is investigated in detail.The experiment has been conducted and the validity of the 3D FE model of cold rotary forging has been verified.The results show that: 1) The contact force distribution is complex and exhibits an obvious non-uniform characteristic in the radial and circumferential directions; 2) The maximum contact force between the upper die and the workpiece is much larger than that between the lower die and the workpiece; 3) The contact force evolution history is periodic and every period experiences three different stages; 4) The total normal contact force is much larger than the total shear contact force at any given time.展开更多
The pre-sliding regime is typically neglected in the dynamic modelling of mechanical systems. However, the change in contact state caused by static friction may decrease positional accuracy and control precision. To i...The pre-sliding regime is typically neglected in the dynamic modelling of mechanical systems. However, the change in contact state caused by static friction may decrease positional accuracy and control precision. To investigate the relationship between contact status and contact force in pre-sliding friction, an optical experimental method is presented in this paper.With this method, the real contact state at the interface of a transparent material can be observed based on the total reflection principle of light by using an image processing technique. A novel setup, which includes a pair of rectangular trapezoidal blocks, is proposed to solve the challenging issue of accurately applying different tangential and normal forces to the contact interface. The improved Otsu's method is used for measurement. Through an experimental study performed on polymethyl methacrylate(PMMA), the quantity of contact asperities is proven to be the dominant factor that affects the real contact area. The relationship between the real contact area and the contact force in the pre-sliding regime is studied, and the distribution of static friction at the contact interface is qualitatively discussed. New phenomena in which the real contact area expands along with increasing static friction are identified. The aforementioned relationship is approximately linear at the contact interface under a constant normal pressure, and the distribution of friction stress decreases from the leading edge to the trailing edge.展开更多
A probabilistic method based on principle of maximum entropy was employed to analyze the randomness of contact force between geomembrane and granular material.The contact force distribution is exponential according to...A probabilistic method based on principle of maximum entropy was employed to analyze the randomness of contact force between geomembrane and granular material.The contact force distribution is exponential according to the proposed method and the grain size is the most important factor that affects the distribution of contact force.The proposed method is then verified by a series of laboratory experiments using glass beads and cobbles as granular material and a very thin pressure,indicating that film is firstly used in these experiments which give a reliable method to measure the contact force at each contact point.展开更多
Pantograph-catenary contact force provides the main basis for evaluation of current quality collection; however,the pantograph-catenary contact force is largely affected by the catenary irregularities.To analyze the c...Pantograph-catenary contact force provides the main basis for evaluation of current quality collection; however,the pantograph-catenary contact force is largely affected by the catenary irregularities.To analyze the correlated relationship between catenary irregularities and pantograph-catenary contact force,a method based on nonlinear auto-regressive with exogenous input(NARX) neural networks was developed.First,to collect the test data of catenary irregularities and contact force,the pantograph/catenary dynamics model was established and dynamic simulation was conducted using MATLAB/Simulink.Second,catenary irregularities were used as the input to NARX neural network and the contact force was determined as output of the NARX neural network,in which the neural network was trained by an improved training mechanism based on the regularization algorithm.The simulation results show that the testing error and correlation coefficient are 0.1100 and 0.8029,respectively,and the prediction accuracy is satisfactory.And the comparisons with other algorithms indicate the validity and superiority of the proposed approach.展开更多
A comprehension of railway dynamic behavior implies the measure of wheel-rail contact forces which are affected by disturbances and errors that are often difficult to be quantified. In this study, a benchmark test cas...A comprehension of railway dynamic behavior implies the measure of wheel-rail contact forces which are affected by disturbances and errors that are often difficult to be quantified. In this study, a benchmark test case is proposed, and a bogie with a layout used on some European locomotives such as SIEMENS El90 is studied. In this layout, an additional shaft on which brake disks are installed is used to transmit the braking torque to the wheelset through a single-stage gearbox. Using a mixed approach based on finite element techniques and statistical considerations, it is possible to evaluate an optimal layout for strain gauge positioning and to optimize the measurement system to diminish the effects of noise and disturbance. We also conducted preliminary evaluations on the precision and frequency response of the proposed system.展开更多
A theoretical model for calculating the stress and strain states of cabling structures with different loadings has been developed in this paper. We solve the problem for the first- and second-stage cable with tensile ...A theoretical model for calculating the stress and strain states of cabling structures with different loadings has been developed in this paper. We solve the problem for the first- and second-stage cable with tensile or bending strain. The contact and friction forces between the strands are presented by two-dimensional contact model. Several theoretical models have been proposed to verify the results when the triplet subjected to the tensile strain, including contact force, contact stresses, and mechanical loss. It is found that loadings will affect the friction force and the mechanical loss of the triplet. The results show that the contact force and mechanical loss are dependent on the twist pitch. A shorter twist pitch can lead to higher contact force, while the trend of mechanical loss with twist pitch is complicated. The mechanical loss may be reduced by adjusting the twist pitch reasonably. The present model provides a simple analysis method to investigate the mechanical behaviors in multistage-structures under different loads.展开更多
Most existing legged robots are developed under laboratory environments and, corre- spondingly, have good performance of locomotion. The robots' ability of walking on rough terrain is of great importance but is seldo...Most existing legged robots are developed under laboratory environments and, corre- spondingly, have good performance of locomotion. The robots' ability of walking on rough terrain is of great importance but is seldom achieved. Being compliant to external unperceived impacts is cru- cial since it is unavoidable that the slip, modeling errors and imprecise information of terrain will make planned trajectories to be followed with errors and unpredictable contacts. The impedance control gives an inspiration to realize an active compliance which allows the legged robots to follow reference trajectories and overcome external disturbances. In this paper, a novel impedance force/ position control scheme is presented, which is based on Cartesian force measurement of leg' s end effector for our hydraulic quadruped robot The simulation verifies the efficiency of the impedance model, and the experimental results at the end demonstrate the feasibility of the proposed control scheme.展开更多
Crowd force by the pushing or crushing of people has resulted in a number of accidents in recent decades. The aftermath investigations have shown that the physical interaction of a highly competitive crowd could produ...Crowd force by the pushing or crushing of people has resulted in a number of accidents in recent decades. The aftermath investigations have shown that the physical interaction of a highly competitive crowd could produce dangerous pressure up to 4500 N/m, which leads to compressive asphyxia or even death. In this paper, a numerical model based on discrete element method (DEM) as referenced from granular flow was proposed to model the evacuation process of a group of highly competitive people, in which the movement of people follows Newton's second law and the body deformation due to compression follows Hertz contact model. The study shows that the clogs occur periodically and flow rate fluctuates greatly if all people strive to pass through a narrow exit at high enough desired velocity. Two types of contact forces acting on people are studied. The first one, i.e., vector contact force, accounts for the movement of the people following Newton's second law. The second one, i.e., scale contact force, accounts for the physical deformation of the human body following the contact law. Simulation shows that the forces chain in crowd flow is turbulent and fragile. A few narrow zones with intense forces are observed in the force field, which is similar to the strain localization observed in granular flow. The force acting on a person could be as high as 4500 N due to force localization, which may be the root cause of compressive asphyxia of people in many crowd incidents.展开更多
Load transformation from the yielding part of the soil to the adjacent part is known as the soil arching effect,which plays an important role in the design of various geotechnical infrastructures.Terzaghi’s trapdoor ...Load transformation from the yielding part of the soil to the adjacent part is known as the soil arching effect,which plays an important role in the design of various geotechnical infrastructures.Terzaghi’s trapdoor test was an importantmilestone in the development of theories on soil arching.The research on earth pressure of the trapdoor problem is presented in this paper using the three-dimensional(3D)discrete element method(DEM).Five 3D trapdoor models with different heights are established by 3DDEMsoftware PFC 3D.The variation of earth pressure on the trapdoor with the downward movement of the trapdoor,the distribution of vertical earth pressure along the horizontal direction,the distribution of vertical earth pressure along the vertical direction,the distribution of lateral earth pressure coefficient along the depth direction,the magnitude and direction of contact force chain are studied,respectively.Related research results show that the earth pressure on the trapdoor decreases rapidly after the downward movement of the trapdoor,and then reaches the minimum earth pressure.After that,the earth’s pressure will rise slightly,and whether this phenomenon occurs depends on the depth ratio.For the bottom soil,due to the stress transfer caused by the soil arching effect,the ratio of earth pressure in the loose area decreases,while the ratio of earth pressure in the stable area increases.With the trapdoor moving down,the vertical earth pressure along the depth in the stable zone is basically consistent with the initial state,which shows an approximate linear distribution.After the trapdoor moves down,the distribution of earth pressure along with the depth in the loose area changes,which is far less than the theoretical value of vertical earth pressure of its self-weight.Because of the compression of the soil on both sides,the lateral earth pressure coefficient of most areas on the central axis of the loose zone is close to the passive earth pressure coefficient Kp.The existence of a‘soil arch’can be observed intuitively from the distribution diagram of the contact force chain in the loose zone.展开更多
A complete mathematical model for logarithmic spiral type sprag one-way clutch design and analysis is given.It assumes that the motion of all clutch components can be expressed by a model of epicyclic gearing.It takes...A complete mathematical model for logarithmic spiral type sprag one-way clutch design and analysis is given.It assumes that the motion of all clutch components can be expressed by a model of epicyclic gearing.It takes advantage of Hunt-Crossley contact impact theory to calculate the contact forces between sprags and races,and it can be used for optimization of design and comparison with other types of sprag clutches.A good deal of analysis shows that the parameters of the steady windup angle,the steady contact force,the natural frequency and natural cycle of clutch have nothing to do with the initial velocity of outer race,while the parameters of the maximum transient windup angle,the maximum transient impact force and the steady engagement time increase linearly in the mode of engaging operation of clutch.It is also shown that the strut angle has great influence on the dynamic engagement performance of clutch.The parameters of the steady windup angle,the maximum transient windup angle,the steady engaging time,the steady contact force,the maximum transient impact force and the natural cycle of clutch decrease linearly nearly with the inner strut angle,while the natural frequency of the system increases linearly with the inner strut angle.展开更多
In order to study the interaction between various fouling particles and ballast,a multi-layer and multi-scale discrete element model(DEM)including the sleeper,ballast bed and the surface layer of subgrade was develope...In order to study the interaction between various fouling particles and ballast,a multi-layer and multi-scale discrete element model(DEM)including the sleeper,ballast bed and the surface layer of subgrade was developed.Two typical fouling particles,the hard particles(sand)and soft ones(coal fines),are considered.A support stiffness test of the ballast bed under various fouling conditions was conducted to calibrate the microscopic parameters of the contact model.With the model,the influence of fouling particles on the mechanical behavior and deformation of the ballast bed was analyzed from macro and micro perspectives.The results show that the increase in the strength of the fouling particles enlarges the stiffness of the ballast bed.Hard particles increase the uniformity coefficient of the contact force bondγof ballast by 50.4%.Fouling particles increase the average stress in the subgrade,soft particles by 2 kPa and hard particles by 1 kPa.Hard particles can reduce the elasticity,plastic deformation and energy dissipation in the track structure.As the fouling particle changes from hard to soft,the proportion of the settlement in ballast bed increases to 40.5%and surface layer of swbgrade settlement decreases to 59.5%.Thus,the influence of fouling particles should be considered carefully in railway design and maintenance.展开更多
A series of accidents caused by crowds within the last decades evoked a lot of scientific interest in modeling the movement of pedestrian crowds. Based on the discrete element method, a granular dynamic model, in whic...A series of accidents caused by crowds within the last decades evoked a lot of scientific interest in modeling the movement of pedestrian crowds. Based on the discrete element method, a granular dynamic model, in which the human body is simplified as a self-driven sphere, is proposed to simulate the characteristics of crowd flow through an exit. In this model, the repulsive force among people is considered to have an anisotropic feature, and the physical contact force due to body deformation is quantified by the Hertz contact model. The movement of the human body is simulated by applying the second Newton's law. The crowd flow through an exit at different desired velocities is studied and simulation results indicated that crowd flow exhibits three distinct states, i.e., smooth state, transition state and phase separation state. In the simulation, the clogging phenomenon occurs more easily when the desired velocity is high and the exit may as a result be totally blocked at a desired velocity of 1.6 m/s or above, leading to faster-to-frozen effect.展开更多
The fatigue load spectrum and operation life evaluation of key components in the catenary system under the high speed train running condition were investigated.Firstly,based on the catenary model and pantograph model,...The fatigue load spectrum and operation life evaluation of key components in the catenary system under the high speed train running condition were investigated.Firstly,based on the catenary model and pantograph model,the couple dynamic equations of pantograph–catenary were built with the Lagrange’s method;then the dynamic contact force was obtained by the Newmark method at the train speeds of 250,280 and 300 km/h,respectively.Secondly,the finite element model(FEM)of one anchor section’s catenary was built to analyze its transient response under the contact force as train running;then the loading time history of messenger wire base,steady arm,registration tube,oblique cantilever,and straight cantilever were extracted.Finally,the key components’fatigue spectrum was carried out by the rain-flow counting method,and operation life was estimated in consideration of such coefficients,such as stress concentration,shape and dimension,surface treatment.The results show that the fatigue life of the catenary system reduces with the increasing of train speed;specifically,the evaluated fatigue life of the steady arm is shorter than other components.展开更多
Considering the discontinuous characteristics of sea ice on various scales,a modified discrete element model(DEM) for sea ice dynamics is developed based on the granular material rheology.In this modified DEM,a soft...Considering the discontinuous characteristics of sea ice on various scales,a modified discrete element model(DEM) for sea ice dynamics is developed based on the granular material rheology.In this modified DEM,a soft sea ice particle element is introduced as a self-adjustive particle size function.Each ice particle can be treated as an assembly of ice floes,with its concentration and thickness changing to variable sizes under the conservation of mass.In this model,the contact forces among ice particles are calculated using a viscous-elastic-plastic model,while the maximum shear forces are described with the Mohr-Coulomb friction law.With this modified DEM,the ice flow dynamics is simulated under the drags of wind and current in a channel of various widths.The thicknesses,concentrations and velocities of ice particles are obtained,and then reasonable dynamic process is analyzed.The sea ice dynamic process is also simulated in a vortex wind field.Taking the influence of thermodynamics into account,this modified DEM will be improved in the future work.展开更多
基金This work was supported by Science Foundation of China University of Petroleum,Beijing(No.2462020YXZZ046,No.2462020XKJS01)the National Natural Science Foundation of China(No.51509259).
文摘The migration process of the pig in oil and gas pipeline is a complex dynamic problem.During the pigging operation,the variation of friction force caused by the nonlinear contact between the sealing disc and the pipe wall is the key factor affecting the dynamic characteristics of the pig motion.At present,the existed pigging models for predicting pigging behavior regard friction as an invariant constant.Experimental research indicates that the friction force of the pig varies with the contact force and the lubrication conditions.Therefore,the assumption that the friction force is constant cannot reflect the friction dynamic characteristics of the pig during pigging,and will also affect the accuracy of the pigging model.Exploring the variation of friction force of pig under different conditions is the basis of establishing the transient dynamic model of a pig.As a result,in this paper,a method of direct measurement of contact force between the pig and the pipeline is presented,the contact force,the friction force,as well as the friction coefficient of the pig are obtained from the experiment.Research results in this paper can help to establish a more accurate dynamic model of pig.
基金Supported by National Natural Science Foundation of China(Grant No.51475263)
文摘The current research on gear system dynamics mainly utilizes linear spring damping model to calculate the contact force between gears. However, this linear model cannot correctly describe the energy transfer process of collision that often occurs in gear system. Focus on the contact-impact events, this paper proposes an improved gear contact force model for dynamic analysis in helical gear transmission system. In this model, a new factor associated with hysteresis damping is developed for contact-impact state, whereas the traditional linear damping factor is utilized for normal meshing state. For determining the selection strategy of these two damping factors, the fundamental contact mechanics of contact-impact event a ected by supporting forces are analyzed. During this analysis, an e ect factor is proposed for evaluating the influence of supporting forces on collision. Meanwhile, a new restitution of coe cient is deduced for calculating hysteresis damping factor, which suitable for both separation and non-separation states at the end of collision. In addition, the time-varying meshing sti ness(TVMS) is obtained based on the potential energy approach and the slice theory. Finally, a dynamic analysis of a helical gear system is carried out to better understand the contact force model proposed in this paper. The analysis results show that the contribution of supporting forces to the dynamic response of contact-impact event within gear pair is important. The supporting forces and dissipative energy are the main reasons for gear system to enter a steady contact state from repeated contact-impact state. This research proposes an improved contact force model which distinguishes meshing and collision states in gear system.
基金The project supported by the National Natural Science Foundation of China(10532020)
文摘A new elastic-plastic impact-contact model is proposed in this paper. By adopting the principle of minimum acceleration for elastic-plastic continue at finite deformation, and with the aid of finite difference method, the proposed model is applied in the problem of dynamic response of a clamped thin circular plate subjected to a projectile impact centrally. The impact force history and response characteristics of the target plate is studied in detail. The theoretical predictions of the impact force and plate deflection are in good agreements with those of LDA experimental data. Linear expressions of the maximum impact force/transverse deflection versus impact velocity are given on the basis of the theoretical results.
基金Projects(51274163,51605146) supported by the National Natural Science Foundation of ChinaProject(U1502274) supported by Key Program of the National Natural Science Foundation of China+2 种基金Project(2018M632769) supported by the China Postdoctoral Science FoundationProject(2017SKY-WK010) supported by the Research Fund of Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources,ChinaProject(18JK0722) supported by Special Research Program of Shaanxi Provincial Department of Education,China
文摘To disclose the effect of contact force and electrode gap on the material transfer behavior of Ag-based contact material, arc-erosion tests of the Ag-4wt.%TiB2 contact material were performed for 5000 operations at 24 V/16 A under resistive load on an electric contact material testing system. The arc energy and arc duration were investigated, the surface morphologies of eroded anode and cathode were characterized, the mass changes after arc-erosion tests were determined, and the material transfer behavior was discussed as well. The results show that contact force has a significant effect on the arc energy, arc duration and erosion morphology, but has no impact on the material transfer mode. However, electrode gap not only influences the arc energy, arc duration and surface morphology, but also changes the material transfer mode. At 1 mm, the material transfers from anode to cathode. Nevertheless, an opposite mode presents at 4 mm, which is from cathode to anode.
基金Supported by Program National Natural Science Foundation of China(Grant Nos.51875389,51975399,52075362)Key Program of Natural Science Foundation of Shanxi Province of China(Grant No.201801D111002)Scientific and Technological Innovation Project for Excellent Talents in Shanxi Province of China(Grant No.201805D211031).
文摘The spindle barrel finishing is commonly used to improve the surface integrity of the important parts of the high-end equipment while it is difficult to provide enough test artifacts for the traditional trial and error experiment to obtain the desirable processing technology.The EDEM simulation of the spindle barrel finishing can provide effective help for the process design,however,the difference between the simulation and experiment is closely related to the selection of the contact model during simulation.In this paper,simulations and experiments are conducted based on the identical apparatus and conditions to facilitate the comparison and validation between each other.Based on the Hertz contact theory,the effect of the material properties of contact objects and the relative position of the workpiece on the contact force is qualified.The expression of the correlation coefficient of the contact model is deduced.Then the formula for calculating the contact force between the barrel finishing abrasive and the workpiece that includes influence coefficient of the material properties and the relative positions is established.Finally,the contact force calculation formula is verified by changing the rotating speed.The result shows that the material correction coefficient ranges from 1.41 to 2.38,which is inversely related to the equivalent modulus E.The position correction coefficient ranges from 2.0 to 2.3.The relative error value between the calculation result and the experimental test result is from 0.58%to 14.07%.This research lay a theoretical foundation for the correction theory of the core elements of the spindle barrel finishing process.
基金Supported by National Natural Science Foundation of China(51475418)National Basic Research 973 Program of China(2011CB706503)Science Fund for Creative Research Groups of National Natural Science Foundation of China(51221004)
文摘Most existing force feedback methods are still difficult to meet the requirements of real-time force calculation in virtual assembly and operation with complex objects. In addition, there is often an assumption that the controlled objects are completely flee and the target object is only completely fixed or flee, thus, the dynamics of the kinematic chain where the controlled objects are located are neglected during the physical simulation of the product manipulation with force feedback interaction. This paper proposes a physical simulation method of product assembly and operation manipulation based on statistically learned contact force prediction model and the coupling of force feedback and dynamics. In the proposed method, based on hidden Markov model (HMM) and local weighting learning (LWL), contact force prediction model is constructed, which can estimate the contact force in real time during interaction. Based on computational load balance model, the computing resources are dynamically assigned and the dynamics integral step is optimized. In addition, smoothing process is performed to the force feedback on the synchronization points. Consequently, we can solve the coupling and synchronization problems of high-frequency feedback force servo. low-frequency dynamics solver servo and scene rendering servo, and realize highly stable and accurate force feedback in the physical simulation of product assembly and operation manipulation. This research proposes a physical simulation method of product assembly and operation manipulation.
基金Project(51105287)supported by the National Natural Science Foundation of ChinaProject(2012BAA08003)supported by the Key Research and Development Project of New Products and New Technologies of Hubei Province,ChinaProject(2013M531750)supported by China Postdoctoral Science Foundation
文摘Cold rotary forging is an advanced and complex metal forming technology with continuous local plastic deformation.Investigating the contact force between the dies and the workpiece has a great significance to improve the life of the dies in cold rotary forging.The purpose of this work is to reveal the contact force responses in cold rotary forging through the modelling and simulation.For this purpose,a 3D elastic-plastic dynamic explicit FE model of cold rotary forging is developed using the FE code ABAQUS/Explicit.Through the modelling and simulation,the distribution and evolution of the contact force in cold rotary forging is investigated in detail.The experiment has been conducted and the validity of the 3D FE model of cold rotary forging has been verified.The results show that: 1) The contact force distribution is complex and exhibits an obvious non-uniform characteristic in the radial and circumferential directions; 2) The maximum contact force between the upper die and the workpiece is much larger than that between the lower die and the workpiece; 3) The contact force evolution history is periodic and every period experiences three different stages; 4) The total normal contact force is much larger than the total shear contact force at any given time.
基金Project supported by the National Natural Science Foundation of China(Grant No.11272171)the Natural Science Foundation of Beijing City,China(Contract No.3172017)the Education Ministry Doctoral Fund of China(Grant No.20120002110070)
文摘The pre-sliding regime is typically neglected in the dynamic modelling of mechanical systems. However, the change in contact state caused by static friction may decrease positional accuracy and control precision. To investigate the relationship between contact status and contact force in pre-sliding friction, an optical experimental method is presented in this paper.With this method, the real contact state at the interface of a transparent material can be observed based on the total reflection principle of light by using an image processing technique. A novel setup, which includes a pair of rectangular trapezoidal blocks, is proposed to solve the challenging issue of accurately applying different tangential and normal forces to the contact interface. The improved Otsu's method is used for measurement. Through an experimental study performed on polymethyl methacrylate(PMMA), the quantity of contact asperities is proven to be the dominant factor that affects the real contact area. The relationship between the real contact area and the contact force in the pre-sliding regime is studied, and the distribution of static friction at the contact interface is qualitatively discussed. New phenomena in which the real contact area expands along with increasing static friction are identified. The aforementioned relationship is approximately linear at the contact interface under a constant normal pressure, and the distribution of friction stress decreases from the leading edge to the trailing edge.
基金Project(51079047)supported by the National Natural Science Foundation of ChinaProject Funded by the Priority Academic Program of Jiangsu Higher Education Institutions,China
文摘A probabilistic method based on principle of maximum entropy was employed to analyze the randomness of contact force between geomembrane and granular material.The contact force distribution is exponential according to the proposed method and the grain size is the most important factor that affects the distribution of contact force.The proposed method is then verified by a series of laboratory experiments using glass beads and cobbles as granular material and a very thin pressure,indicating that film is firstly used in these experiments which give a reliable method to measure the contact force at each contact point.
基金Project(20120009110035)supported by Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(2011BAG01B05)supported by National Key Technology Research and Development Program of ChinaProject(2011AA110501)supported by National High-tech Research and Development Program of China
文摘Pantograph-catenary contact force provides the main basis for evaluation of current quality collection; however,the pantograph-catenary contact force is largely affected by the catenary irregularities.To analyze the correlated relationship between catenary irregularities and pantograph-catenary contact force,a method based on nonlinear auto-regressive with exogenous input(NARX) neural networks was developed.First,to collect the test data of catenary irregularities and contact force,the pantograph/catenary dynamics model was established and dynamic simulation was conducted using MATLAB/Simulink.Second,catenary irregularities were used as the input to NARX neural network and the contact force was determined as output of the NARX neural network,in which the neural network was trained by an improved training mechanism based on the regularization algorithm.The simulation results show that the testing error and correlation coefficient are 0.1100 and 0.8029,respectively,and the prediction accuracy is satisfactory.And the comparisons with other algorithms indicate the validity and superiority of the proposed approach.
文摘A comprehension of railway dynamic behavior implies the measure of wheel-rail contact forces which are affected by disturbances and errors that are often difficult to be quantified. In this study, a benchmark test case is proposed, and a bogie with a layout used on some European locomotives such as SIEMENS El90 is studied. In this layout, an additional shaft on which brake disks are installed is used to transmit the braking torque to the wheelset through a single-stage gearbox. Using a mixed approach based on finite element techniques and statistical considerations, it is possible to evaluate an optimal layout for strain gauge positioning and to optimize the measurement system to diminish the effects of noise and disturbance. We also conducted preliminary evaluations on the precision and frequency response of the proposed system.
基金supported by National Natural Science Foundation of China (Grants 11202087, 11472120, 11421062)the National Key Project of Scientific Instrument and Equipment Development (Grant 11327802)+1 种基金the National Key Project of Magneto-Constrained Fusion Energy Development Program (Grant 2013GB110002)New Century Excellent Talents in University of Ministry of Education of China (Grant NCET-13-0266)
文摘A theoretical model for calculating the stress and strain states of cabling structures with different loadings has been developed in this paper. We solve the problem for the first- and second-stage cable with tensile or bending strain. The contact and friction forces between the strands are presented by two-dimensional contact model. Several theoretical models have been proposed to verify the results when the triplet subjected to the tensile strain, including contact force, contact stresses, and mechanical loss. It is found that loadings will affect the friction force and the mechanical loss of the triplet. The results show that the contact force and mechanical loss are dependent on the twist pitch. A shorter twist pitch can lead to higher contact force, while the trend of mechanical loss with twist pitch is complicated. The mechanical loss may be reduced by adjusting the twist pitch reasonably. The present model provides a simple analysis method to investigate the mechanical behaviors in multistage-structures under different loads.
基金Supported by the National High Technology Research and Development Program of China(863Program)(2011AA041002)
文摘Most existing legged robots are developed under laboratory environments and, corre- spondingly, have good performance of locomotion. The robots' ability of walking on rough terrain is of great importance but is seldom achieved. Being compliant to external unperceived impacts is cru- cial since it is unavoidable that the slip, modeling errors and imprecise information of terrain will make planned trajectories to be followed with errors and unpredictable contacts. The impedance control gives an inspiration to realize an active compliance which allows the legged robots to follow reference trajectories and overcome external disturbances. In this paper, a novel impedance force/ position control scheme is presented, which is based on Cartesian force measurement of leg' s end effector for our hydraulic quadruped robot The simulation verifies the efficiency of the impedance model, and the experimental results at the end demonstrate the feasibility of the proposed control scheme.
基金supported by the National Natural Science Foundation of China(Grant No.71473207)China Fundamental Research Funds for Central Universities(Grant No.2682016cx082)
文摘Crowd force by the pushing or crushing of people has resulted in a number of accidents in recent decades. The aftermath investigations have shown that the physical interaction of a highly competitive crowd could produce dangerous pressure up to 4500 N/m, which leads to compressive asphyxia or even death. In this paper, a numerical model based on discrete element method (DEM) as referenced from granular flow was proposed to model the evacuation process of a group of highly competitive people, in which the movement of people follows Newton's second law and the body deformation due to compression follows Hertz contact model. The study shows that the clogs occur periodically and flow rate fluctuates greatly if all people strive to pass through a narrow exit at high enough desired velocity. Two types of contact forces acting on people are studied. The first one, i.e., vector contact force, accounts for the movement of the people following Newton's second law. The second one, i.e., scale contact force, accounts for the physical deformation of the human body following the contact law. Simulation shows that the forces chain in crowd flow is turbulent and fragile. A few narrow zones with intense forces are observed in the force field, which is similar to the strain localization observed in granular flow. The force acting on a person could be as high as 4500 N due to force localization, which may be the root cause of compressive asphyxia of people in many crowd incidents.
基金supports from National Natural Science Foundation of China (NSFC Grant No.52008373)Natural Science Foundation of Zhejiang Province of China (No.Q22E080445)are greatly acknowledged.
文摘Load transformation from the yielding part of the soil to the adjacent part is known as the soil arching effect,which plays an important role in the design of various geotechnical infrastructures.Terzaghi’s trapdoor test was an importantmilestone in the development of theories on soil arching.The research on earth pressure of the trapdoor problem is presented in this paper using the three-dimensional(3D)discrete element method(DEM).Five 3D trapdoor models with different heights are established by 3DDEMsoftware PFC 3D.The variation of earth pressure on the trapdoor with the downward movement of the trapdoor,the distribution of vertical earth pressure along the horizontal direction,the distribution of vertical earth pressure along the vertical direction,the distribution of lateral earth pressure coefficient along the depth direction,the magnitude and direction of contact force chain are studied,respectively.Related research results show that the earth pressure on the trapdoor decreases rapidly after the downward movement of the trapdoor,and then reaches the minimum earth pressure.After that,the earth’s pressure will rise slightly,and whether this phenomenon occurs depends on the depth ratio.For the bottom soil,due to the stress transfer caused by the soil arching effect,the ratio of earth pressure in the loose area decreases,while the ratio of earth pressure in the stable area increases.With the trapdoor moving down,the vertical earth pressure along the depth in the stable zone is basically consistent with the initial state,which shows an approximate linear distribution.After the trapdoor moves down,the distribution of earth pressure along with the depth in the loose area changes,which is far less than the theoretical value of vertical earth pressure of its self-weight.Because of the compression of the soil on both sides,the lateral earth pressure coefficient of most areas on the central axis of the loose zone is close to the passive earth pressure coefficient Kp.The existence of a‘soil arch’can be observed intuitively from the distribution diagram of the contact force chain in the loose zone.
基金Project(2011CB706800)supported by the National Basic Research Program of China
文摘A complete mathematical model for logarithmic spiral type sprag one-way clutch design and analysis is given.It assumes that the motion of all clutch components can be expressed by a model of epicyclic gearing.It takes advantage of Hunt-Crossley contact impact theory to calculate the contact forces between sprags and races,and it can be used for optimization of design and comparison with other types of sprag clutches.A good deal of analysis shows that the parameters of the steady windup angle,the steady contact force,the natural frequency and natural cycle of clutch have nothing to do with the initial velocity of outer race,while the parameters of the maximum transient windup angle,the maximum transient impact force and the steady engagement time increase linearly in the mode of engaging operation of clutch.It is also shown that the strut angle has great influence on the dynamic engagement performance of clutch.The parameters of the steady windup angle,the maximum transient windup angle,the steady engaging time,the steady contact force,the maximum transient impact force and the natural cycle of clutch decrease linearly nearly with the inner strut angle,while the natural frequency of the system increases linearly with the inner strut angle.
基金Project(51978045) supported by the National Natural Science Foundation of ChinaProject([2017]7) supported by Shenshuo Science and Technology Development Project,China。
文摘In order to study the interaction between various fouling particles and ballast,a multi-layer and multi-scale discrete element model(DEM)including the sleeper,ballast bed and the surface layer of subgrade was developed.Two typical fouling particles,the hard particles(sand)and soft ones(coal fines),are considered.A support stiffness test of the ballast bed under various fouling conditions was conducted to calibrate the microscopic parameters of the contact model.With the model,the influence of fouling particles on the mechanical behavior and deformation of the ballast bed was analyzed from macro and micro perspectives.The results show that the increase in the strength of the fouling particles enlarges the stiffness of the ballast bed.Hard particles increase the uniformity coefficient of the contact force bondγof ballast by 50.4%.Fouling particles increase the average stress in the subgrade,soft particles by 2 kPa and hard particles by 1 kPa.Hard particles can reduce the elasticity,plastic deformation and energy dissipation in the track structure.As the fouling particle changes from hard to soft,the proportion of the settlement in ballast bed increases to 40.5%and surface layer of swbgrade settlement decreases to 59.5%.Thus,the influence of fouling particles should be considered carefully in railway design and maintenance.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.71473207,51178445,and 71103148)the Research Grant Council,Government of Hong Kong,China(Grant No.City U119011)the Fundamental Research Funds for the Central Universities,China(Grant Nos.2682014CX103 and 2682014RC05)
文摘A series of accidents caused by crowds within the last decades evoked a lot of scientific interest in modeling the movement of pedestrian crowds. Based on the discrete element method, a granular dynamic model, in which the human body is simplified as a self-driven sphere, is proposed to simulate the characteristics of crowd flow through an exit. In this model, the repulsive force among people is considered to have an anisotropic feature, and the physical contact force due to body deformation is quantified by the Hertz contact model. The movement of the human body is simulated by applying the second Newton's law. The crowd flow through an exit at different desired velocities is studied and simulation results indicated that crowd flow exhibits three distinct states, i.e., smooth state, transition state and phase separation state. In the simulation, the clogging phenomenon occurs more easily when the desired velocity is high and the exit may as a result be totally blocked at a desired velocity of 1.6 m/s or above, leading to faster-to-frozen effect.
基金Project(51175383)supported by the National Natural Science Foundation of China(NSF)
文摘The fatigue load spectrum and operation life evaluation of key components in the catenary system under the high speed train running condition were investigated.Firstly,based on the catenary model and pantograph model,the couple dynamic equations of pantograph–catenary were built with the Lagrange’s method;then the dynamic contact force was obtained by the Newmark method at the train speeds of 250,280 and 300 km/h,respectively.Secondly,the finite element model(FEM)of one anchor section’s catenary was built to analyze its transient response under the contact force as train running;then the loading time history of messenger wire base,steady arm,registration tube,oblique cantilever,and straight cantilever were extracted.Finally,the key components’fatigue spectrum was carried out by the rain-flow counting method,and operation life was estimated in consideration of such coefficients,such as stress concentration,shape and dimension,surface treatment.The results show that the fatigue life of the catenary system reduces with the increasing of train speed;specifically,the evaluated fatigue life of the steady arm is shorter than other components.
基金Special Fund of Marine Commonweal Industry under contact Nos 201105016 and 201205007supported by National Marine Environment Forecasting Centrethe National Natural Science Foundation of China under contact No.41176012
文摘Considering the discontinuous characteristics of sea ice on various scales,a modified discrete element model(DEM) for sea ice dynamics is developed based on the granular material rheology.In this modified DEM,a soft sea ice particle element is introduced as a self-adjustive particle size function.Each ice particle can be treated as an assembly of ice floes,with its concentration and thickness changing to variable sizes under the conservation of mass.In this model,the contact forces among ice particles are calculated using a viscous-elastic-plastic model,while the maximum shear forces are described with the Mohr-Coulomb friction law.With this modified DEM,the ice flow dynamics is simulated under the drags of wind and current in a channel of various widths.The thicknesses,concentrations and velocities of ice particles are obtained,and then reasonable dynamic process is analyzed.The sea ice dynamic process is also simulated in a vortex wind field.Taking the influence of thermodynamics into account,this modified DEM will be improved in the future work.