After the pollutant discharged into the river or lake has been reduced, the release of the contaminant from the sediment to the overlying water may cause the river and lake be contaminated again. On the condition that...After the pollutant discharged into the river or lake has been reduced, the release of the contaminant from the sediment to the overlying water may cause the river and lake be contaminated again. On the condition that the overlying water flow does not lead to sediment suspension, numerical researches are carried out for the mechanism of contaminant release through the sedimentoverlying water interface. The overlying water flow is calculated as turbulence. The sediment is regarded as isotropic homogeneous porous medium, therefore the seepage field in the porous sediment layer is obtained by solving Darcy's equations. Coupled two dimensional steady flows of the overlying water and the pore water in the sediment are calculated. Based on the flow fields obtained, the unsteady contaminant solute transportation process in the pore water in the sediment and the overlying water is numerically simulated, as the shapes of the sediment-overlying water interface are flat or periodic triangular respectively. Numerical results show that the exchange of the pore water and the overlying water is an important factor which decides the release flux of the contaminant from the sediment to the overlying water. The pressure distribution produced by the overlying water flow along the sedimentoverlying water interface, as it is not flat, may induce the seepage of the pore water in the sediment and through the sedimentoverlying water interface, which may increase the release flux of the contaminant from the sediment to the overlying water.展开更多
Sediment layers containing contaminants play a significant role in environmental hydrodynamics. Experiments were conducted in order to characterize the relative roles of resuspended particles and pore water under diff...Sediment layers containing contaminants play a significant role in environmental hydrodynamics. Experiments were conducted in order to characterize the relative roles of resuspended particles and pore water under different flow and sediment conditions. A conservative tracer (NaC1) and a reactive tracer (phosphate) were used as contaminants in the bottom sediment in a laboratory flume. The mixing between the overlying water and pore water occurred over a short time while the desorption of contaminants from fine-grained resuspended particles lasted a relatively long time. The effects of resuspended particles and pore water on the variations of release flux and concentration of contaminants in water with time under different hydrodynamic conditions were quantified. The results show that pore water dominated the initial release flux, which could be several orders of magnitude greater than the flux due to molecular diffusion. Flux contribution of desorption from sediment particles in the latter release could be equal to what was seen from pore water in the initial stage.展开更多
[ Objective] The research aimed to study simulated method on the release of sediment pollutants in the Temple Lake. [ Method] For existing pollution status of the Temple Lake, sediments and overlying water were sample...[ Objective] The research aimed to study simulated method on the release of sediment pollutants in the Temple Lake. [ Method] For existing pollution status of the Temple Lake, sediments and overlying water were sampled by the integrated device. Based on the technical route, through the orthogonal test, release processes of nitrogen and phosphorus from sediment were simulated, and their release speeds were estimated under different temperatures, pH and DO in the laboratory. Relationship between environmental factor and pollutant release was explored. [ Result] The integrated device of sediment sampling and test had simple structure, cheap cost and easy operation, and sediment pollution test could be conducted without disturbing sediment after collecting sediment. Among the studied three impact factors, temperature had the maximum influence on contaminant release process, which should be considered as the important factor of future research. [ Conclusion] Compared with routine research method of sediment contaminant release from other lakes, simulated method of contaminant release from sediment in the Temple Lake had many advantaqes, which was favorable for scientific research in latter period and actual lake control.展开更多
基金Project supported by the National Natural Science Foun-dation of China(Grant No.11032007)the Shanghai Program for Innovative Research Team in Universities
文摘After the pollutant discharged into the river or lake has been reduced, the release of the contaminant from the sediment to the overlying water may cause the river and lake be contaminated again. On the condition that the overlying water flow does not lead to sediment suspension, numerical researches are carried out for the mechanism of contaminant release through the sedimentoverlying water interface. The overlying water flow is calculated as turbulence. The sediment is regarded as isotropic homogeneous porous medium, therefore the seepage field in the porous sediment layer is obtained by solving Darcy's equations. Coupled two dimensional steady flows of the overlying water and the pore water in the sediment are calculated. Based on the flow fields obtained, the unsteady contaminant solute transportation process in the pore water in the sediment and the overlying water is numerically simulated, as the shapes of the sediment-overlying water interface are flat or periodic triangular respectively. Numerical results show that the exchange of the pore water and the overlying water is an important factor which decides the release flux of the contaminant from the sediment to the overlying water. The pressure distribution produced by the overlying water flow along the sedimentoverlying water interface, as it is not flat, may induce the seepage of the pore water in the sediment and through the sedimentoverlying water interface, which may increase the release flux of the contaminant from the sediment to the overlying water.
基金supported by the National Natural Science Foundation of China(Grants No.10972134 and 11032007)
文摘Sediment layers containing contaminants play a significant role in environmental hydrodynamics. Experiments were conducted in order to characterize the relative roles of resuspended particles and pore water under different flow and sediment conditions. A conservative tracer (NaC1) and a reactive tracer (phosphate) were used as contaminants in the bottom sediment in a laboratory flume. The mixing between the overlying water and pore water occurred over a short time while the desorption of contaminants from fine-grained resuspended particles lasted a relatively long time. The effects of resuspended particles and pore water on the variations of release flux and concentration of contaminants in water with time under different hydrodynamic conditions were quantified. The results show that pore water dominated the initial release flux, which could be several orders of magnitude greater than the flux due to molecular diffusion. Flux contribution of desorption from sediment particles in the latter release could be equal to what was seen from pore water in the initial stage.
基金Supported by the Item of Wuhan Science and Technology Bureau,China
文摘[ Objective] The research aimed to study simulated method on the release of sediment pollutants in the Temple Lake. [ Method] For existing pollution status of the Temple Lake, sediments and overlying water were sampled by the integrated device. Based on the technical route, through the orthogonal test, release processes of nitrogen and phosphorus from sediment were simulated, and their release speeds were estimated under different temperatures, pH and DO in the laboratory. Relationship between environmental factor and pollutant release was explored. [ Result] The integrated device of sediment sampling and test had simple structure, cheap cost and easy operation, and sediment pollution test could be conducted without disturbing sediment after collecting sediment. Among the studied three impact factors, temperature had the maximum influence on contaminant release process, which should be considered as the important factor of future research. [ Conclusion] Compared with routine research method of sediment contaminant release from other lakes, simulated method of contaminant release from sediment in the Temple Lake had many advantaqes, which was favorable for scientific research in latter period and actual lake control.