期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Carbon,nitrogen and phosphorus stoichiometry in Pinus tabulaeformis forest ecosystems in warm temperate Shanxi Province,north China 被引量:8
1
作者 Ning Wang Fengzhen Fu +1 位作者 Baitian Wang Ruijun Wang 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第6期1665-1673,共9页
Although carbon(C), nitrogen(N), and phosphorous(P) stoichiometric ratios are considered good indicators of nutrient excess/limitation and thus of ecosystem health, few reports have discussed the trends and the recipr... Although carbon(C), nitrogen(N), and phosphorous(P) stoichiometric ratios are considered good indicators of nutrient excess/limitation and thus of ecosystem health, few reports have discussed the trends and the reciprocal effects of C:N:P stoichiometry in plant–litter–soil systems. The present study analyzed C:N:P ratios in four age groups of Chinese pine, Pinus tabulaeformis Carr., forests in Shanxi Province, China: plantation young forests(AY,<20 year-old); plantation middle-aged forests(AM, 21–30 year-old); natural young forests(NY,<30 year-old); and natural middle-aged forests(NM,31–50 year-old). The average C:N:P ratios calculated for tree, shrub, and herbaceous leaves, litter, and soil(0–100 cm) were generally higher in NY followed by NM,AM, and AY. C:N and C:P ratios were higher in litter than in leaves and soils, and reached higher values in the litter and leaves of young forests than in middle-aged forests;however, C:N and C:P ratios were higher in soils of middle-aged forests than in young forests. N:P ratios were higher in leaves than in litter and soils regardless of stand age; the consistent N:P<14 values found in all forests indicated N limitations. With plant leaves, C:P ratios were highest in trees, followed by herbs and shrubs, indicating a higher efficiency in tree leaf formation. C:N ratios decreased with increasing soil depth, whereas there was no trend for C:P and N:P ratios. C:N:P stoichiometry of forest foliage did not exhibit a consistent variation according to stand age. Research on the relationships between N:P, and P, N nutrient limits and the characteristics of vegetation nutrient adaptation need to be continued. 展开更多
关键词 Pinus tabulaeformis Carr. Forest ecosystem content of carbon Nitrogen and phosphorus Ecological stoichiometry Warm temperate zone China
下载PDF
Synthesis of polycrystalline γ-AlON powders by novel wet chemical processing 被引量:4
2
作者 LEI JingXuan MA FeiZhong +3 位作者 SHI Ying XIE JianJun HU Wei SHI ZhiWei 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第12期3405-3410,共6页
The synthesis of polycrystalline aluminum oxynitride (AlON) powders was investigated by the carbothermal reduction and ni- tridation (CRN) of amorphous precursor obtained by wet chemical processing. Co-precipitati... The synthesis of polycrystalline aluminum oxynitride (AlON) powders was investigated by the carbothermal reduction and ni- tridation (CRN) of amorphous precursor obtained by wet chemical processing. Co-precipitation processing was employed to achieve amorphous precursor from AI(NO3)3 solution dispersed by nanosized carbon particles, which was composed of AI(OH)3 and C particles homogeneously. The effects of the content of carbon black, pH value, and calcination temperature on formation of A1ON phase were investigated by means of XRD, SEM and TEM, respectively. It was found that single phase AION powder could be synthesized when the resultant precursors were calcined at 1750℃ for 2 hours under flowing N2. Un- der optimal additional content of C (5.6wt%), the resultant A1ON powders exhibited the primary particle size of about 1-3 μm with a specific surface area of 3.2 m2/g, which were superior to that of carbothermal reduction of immediate mixture of γ-A1203/C powders. 展开更多
关键词 aluminum oxynitride (AION) co-precipitation processing the content of carbon black pH value calcination temperature
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部