期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
Three-dimensional constrained gravity inversion of Moho depth and crustal structural characteristics at Mozambique continental margin
1
作者 Shihao Yang Zhaocai Wu +3 位作者 Yinxia Fang Mingju Xu Jialing Zhang Fanlin Yang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第2期120-129,共10页
Mozambique's continental margin in East Africa was formed during the break-off stage of the east and west Gondwana lands. Studying the geological structure and division of continent-ocean boundary(COB) in Mozambiq... Mozambique's continental margin in East Africa was formed during the break-off stage of the east and west Gondwana lands. Studying the geological structure and division of continent-ocean boundary(COB) in Mozambique's continental margin is considered of great significance to rebuild Gondwana land and understand its movement mode. Along these lines, in this work, the initial Moho was fit using the known Moho depth from reflection seismic profiles, and a 3D multi-point constrained gravity inversion was carried out. Thus, highaccuracy Moho depth and crustal thickness in the study area were acquired. According to the crustal structure distribution based on the inversion results, the continental crust at the narrowest position of the Mozambique Channel was detected. According to the analysis of the crustal thickness, the Mozambique ridge is generally oceanic crust and the COB of the whole Mozambique continental margin is divided. 展开更多
关键词 3D constrained gravity inversion continent-ocean boundary Mozambique continental margin Moho depth
下载PDF
Hydrothermal Mineralization on the Mesoproterozoic Passive Continental Margins of China: A Case Study of the Langshan-Zha'ertaishan Belt,Inner Mongolia, China 被引量:20
2
作者 PENGRunmin ZHAIYusheng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第2期534-547,共14页
Most ore-forming characteristics of the Langshan-Zha'ertaishan hydrothermal exhalation belt, which consists of the Dongshengmiao, Huogeqi, Tanyaokou and Jiashengpan large-superlarge Zn-Pb-Cu-Fe sulfide deposits, a... Most ore-forming characteristics of the Langshan-Zha'ertaishan hydrothermal exhalation belt, which consists of the Dongshengmiao, Huogeqi, Tanyaokou and Jiashengpan large-superlarge Zn-Pb-Cu-Fe sulfide deposits, are most similar to those of Mesoproterozoic SEDEX-type provinces of the world. The characteristics include: (1) All deposits of this type in the belt occur in third-order fault-basins in the Langshan-Zha'ertaishan aulacogen along the northern margin of the North China Platform; (2) these deposits with all their orebodies hosted in the Mesoproterozoic impure dolomite-marble and carbonaceous phyllite (or schists) have an apparent stratabound nature; ores display laminated and banded structures, showing clear depositional features; (3) there is some evidence of syn-sedimentary faulting, which to a certain extent accounts for the temporal and spatial distribution and the size of the orebodies in all deposits and the formation of intrabed conglomerates and breccias; (4) they show lateral and vertical zonation of sulfides; (5) The Cu/(Pb+Zn+Cu) ratio of the large and thick Pb+Zn+Cu orebodies gradually decreases from bottom to top; and (6) barite is interbedded with pyrites and sometimes with sphalerite. However, some characteristics such as the Co/Ni radio of the pyrites, the volcanism, for example, of the Langshan-Zha'ertaishan metallogenic belt, are different from those of the typical SEDEX deposits of the world. The meta-basic volcanic rock in Huogeqi, the sodic bimodal volcanic rocks in the Dongshengmiao and potassic bimodal-volcanic rocks with blastoporphyritic and blasto-glomeroporphyritic texture as well as blasto-amygdaloidal structure in the Tanyaokou deposits have been discovered in the only ore-bearing second formation of the Langshan Group in the past 10 years. The metallogeny of some deposits hosted in the Langshan Group is closely related to syn-sedimentary volcanism based on the following facts: most of the lead isotopes in sphalerite, galena, pyrite, pyrrhotite and chalcopyrite plot on both sides of the line for the mantle or between the lines for the mantle and lower crust in the lead isotope composition diagram; cobalt content of some pyrites samples is much higher than the nickel content (Co/Ni=11.91-12.19). Some volcanic blocks and debris have been picked out from some pyritic and pyrrhotitic ores. All Zn-Pb-Cu-Fe sulfide orebodies in these deposits occur in the strata overlying metamorphic volcanic rocks in the only ore-bearing second formation. In the Jiashengpan deposit that lacks syn-sedimentary volcanic rocks in the host succession only Pb and Zn ores occur without Cu ore, but in the Dongshengmiao, Tanyaokou and Huogeqi deposits with syn-sedimentary volcanic rocks in the host succession Cu ores occur. This indicates a relatively higher ore-forming temperature. The process of syn-sedimentary volcanic eruption directly supplied some ore-forming elements, and resulted in secular geothermal anomaly favorable for the circulation of a submarine convective hydrothermal system, which accounts for the precipitation of deep mineralizing fluids exhaling into anoxidic basins along the syn-sedimentary fault system in the Langshan-Zha'ertai rift. The Dongshengmiao, Tanyaokou, and Huogeqi deposits hosted in the Langshan Group appear to be a transitional type of mineral deposit between SEDEX and VMS-types but with a bias towards SEDEX, while the Jiashengpan deposit hosted in the Zha'ertai Group is of a characteristic SEDEX type. This evidence, together with other new discoveries of Mesoproterozoic volcanic rocks and the features of lithogeny and metallogeny of the Bayun Obo deposit in the neighborhood emphasize the diversity, complexity and uniqueness of the Mesoproterozoic Langshan-Zha'ertai-Bayun Obo ore belt. 展开更多
关键词 passive continental margin stratabound and rock-controlled character VOLCANISM transitional SEDEX and VMS-type deposits MESOPROTEROZOIC northern margin of the North China Platform
下载PDF
Three Stages of Mesozoic Bimodal Igneous Rocks and Their Tectonic Implications on the Continental Margin of Southeastern China 被引量:35
3
作者 XINGGuangfu YANGZhuliang CHENRong SHENJialin WEINaiyi ZHOUYuzhang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第1期27-39,共13页
There are large-scale Mesozoic bimodal igneous rock associations on the continental margin of southeastern China. They aroused extensive attention in the 1980s because of their specific tectonic implications, and have... There are large-scale Mesozoic bimodal igneous rock associations on the continental margin of southeastern China. They aroused extensive attention in the 1980s because of their specific tectonic implications, and have been found frequently during recent geological surveys. This paper reviews the studies of regional Mesozoic bimodal rocks, and concludes that they can be subdivided into three stages, i.e., the Early Jurassic (209-170 Ma, the first (Ⅰ) stage), the Late Jurassic-early Early Cretaceous (154-121 Ma, the second (Ⅱ) stage), and the late Early Cretaceous-Late Cretaceous (115-85 Ma, the third (Ⅲ) stage). These three stages of bimodal rocks were formed in different tectonic settings, and are important indicators for regional Mesozoic tectonic evolution. 展开更多
关键词 three stages of bimodal rocks MESOZOIC continental margin of southeastern China
下载PDF
Properties of Continental Margin and its Hydrocarbon Exploration Significance in Cambrian in the Southern Ordos Kratogen of North China 被引量:9
4
作者 BAI Yunlai MA Yuhu +2 位作者 HUANG Yong LIAO Jianbo LIU Xiaoguang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第3期777-803,共27页
It is important to determine the properties of the tectonics in Cambrian period for the sake of prospecting deep hydrocarbon in the near future in the southern Ordos Kratogen of North China. Authors chose the marginal... It is important to determine the properties of the tectonics in Cambrian period for the sake of prospecting deep hydrocarbon in the near future in the southern Ordos Kratogen of North China. Authors chose the marginal areas of the southern Ordos basin as the object of research, avoided the effects of both the Qinling Orogenic Belts (QOB) and Weihe River Graben (WRG) whose geological structures are too complicated. By surveying typical Cambrian outcrops and profdes in the basin edges and based on the cores of 57 wells which penetrated the Cambrian in the basin, combined with the seismic profiles, the field gammaray measuement results and the carbon isotope analysis, Authors conclude that the southern margin of the Ordos Kratogen during Cambrian was a passive continental margin which resulted from sea-floor spreading of the Ancient Qinling Ocean. Epicontinental sea carbonate sediments formed in the south Ordos continental margin during Cambrian, and were predominant as tidal flat and o61itic shoal. Both transgression-regression process and the change in palaeostructure have the obvious cyclicity. Using the junction between the late Nangao age of Qiandong epoch and the early Duyun age of Qiandong epoch as a boundary, each had a full transgression cycle at the upper and lower stages. The early cycle is characterized by high energy clastic littoral facies while the late cycle is characterized by carbonate ramp on which clear water and muddy water developed alternately changing to carbonate platform last. During the early stages, An aulacogen was formed in the middle section of the southern margin. The southern Ordos margin was uplifted and denudated by the Huaiyuan Movement which occurred from the late Furongian age to the middle Flolan age and the history of the passive continental margin ended and entering into a new tectonic cycle. The unconformity surface caused by the Huaiyuan Movement, along with its neighborhood areas where dissolved pores and cavities are developed, may be another important district for good hydrocarbon reservoirs (excluding the unconformity surface on the top of the Ordovician in the Ordos basin). 展开更多
关键词 the Southern Ordos Kratogen Passive continental margin CAMBRIAN deep hydrocarbon exploration
下载PDF
Early Cretaceous Magma Mingling in Xiaocuo,Southeastern China Continental Margin:Implications for Subduction of Paleo-Pacific Plate 被引量:3
5
作者 ZHOU Liyun WANG Yu +1 位作者 HEI Huixin ZHOU Xiaohui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第5期1713-1742,共30页
Magma mingling has been identified within the continental margin of southeastern China.This study focuses on the relationship between mafic and felsic igneous rocks in composite dikes and plutons in this area,and uses... Magma mingling has been identified within the continental margin of southeastern China.This study focuses on the relationship between mafic and felsic igneous rocks in composite dikes and plutons in this area,and uses this relationship to examine the tectonic and geodynamic implications of the mingling of mafic and felsic magmas.Mafic magmatic enclaves(MMEs) show complex relationships with the hosting Xiaocuo granite in Fujian area,including lenticular to rounded porphyritic microgranular enclaves containing abundant felsic/mafic phenocrysts,elongate mafic enclaves,and back-veining of the felsic host granite into mafic enclaves.LA-ICP-MS zircon U-Pb analyses show crystallization of the granite and dioritic mafic magmatic enclave during ca.132 and 116 Ma.The host granite and MMEs both show zircon growth during repeated thermal events at-210 Ma and 160-180 Ma.Samples from the magma mingling zone generally contain felsic-derived zircons with well-developed growth zoning and aspect ratios of 2-3,and maficderived zircons with no obvious oscillatory zoning and with higher aspect ratios of 5-10.However,these two groups of zircons show no obvious trace element or age differences.The Hf-isotope compositions show that the host granite and MMEs have similar ε(Hf)(t) values from negative to positive which suggest a mixed source from partial melting of the Meso-Neoproterozoic with involvement of enriched mantlederived magmas or juvenile components.The lithologies,mineral associations,and geochemical characteristics of the mafic and felsic rocks in this study area indicate that both were intruded together,suggesting Early Cretaceous mantle—crustal interactions along the southeastern China continental margin.The Early Cretaceous magma mingling is correlated to subduction of Paleo-Pacific plate. 展开更多
关键词 magma mingling mafic and felsic magma zircon U-Pb ages zircon Hf isotopes southeastern China continental margin
下载PDF
Subduction and Collision of the Jinsha River Paleo-Tethys: Constraints from Zircon U-Pb Dating and Geochemistry of the Ludian Batholith in the Jiangda–Deqen–Weixi Continental Margin Arc 被引量:3
6
作者 HE Juan WANG Baodi WANG Qiyu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第4期972-987,共16页
The Jiangda–Deqen–Weixi continental margin arc(DWCA) developed along the base of the Changdu–Simao Block and was formed as a result of the subduction of the Jinsha River Ocean Slab and the subsequent collision. The... The Jiangda–Deqen–Weixi continental margin arc(DWCA) developed along the base of the Changdu–Simao Block and was formed as a result of the subduction of the Jinsha River Ocean Slab and the subsequent collision. The Ludian batholith is located in the southern part of the DWCA and is the largest batholith in northwest Yunnan. Granite samples from the Ludian batholith yield an early Middle Permian age of 271.0 ± 2.8 Ma. The geochemical data of the early Middle Permian granitoids show high Si2 O, low P2 O5 and MgO contents that belong to calc-alkaline series and peraluminous I-type rocks. Their εHf(t) values range from-5.01 to +0.58, indicating that they were formed by hybrid magmas related to the subduction of the Jinsha River Tethys Ocean. The monzonite and monzogranite samples yield Late Permian ages of 250.6 ± 1.8 Ma and 252.1 ± 1.3 Ma, respectively. The Late Permian granitoids are high-K calc alkaline and shoshonite series metaluminous I-type rocks. Their εHf(t) values range from-4.12 to-1.68 and from-7.88 to-6.64, respectively. The mixing of crustal and mantle melts formed the parental magma of the Late Permian granitoids. This study, combined with previous work, demonstrates the process from subduction to collision of the Jinsha River Paleo-Tethys Ocean. 展开更多
关键词 I-type granite Ludian batholith Jinsha River Paleo-Tethys Jiangda–Deqen–Weixi continental margin arc
下载PDF
Tectonic Development of the Proterozoic Continental Margins in East Qinling and Adjacent Regions 被引量:2
7
作者 Wang HongzhenDepartment of Geology , China University of Geosciences, Beijing 100083 《Journal of Earth Science》 SCIE CAS CSCD 1990年第1期5-16,共12页
The East Qinling and adjacent cratonic regions belong to two geotectonic units, the Sinokorean Subdomain including the Sinokorean Platform and its southern continental margin the North Qinling Belt, and the Yangtzean ... The East Qinling and adjacent cratonic regions belong to two geotectonic units, the Sinokorean Subdomain including the Sinokorean Platform and its southern continental margin the North Qinling Belt, and the Yangtzean Subdomain comprising the Yangtze Platform and its northern continental margin the South Qinling Belt .The Qinling region may thus be subdivided into two continental margin belts separated from each other by the Proterozoic Qinling marine realm , which did not disappear until Late Triassic . The convergent crustal consumption zone ,the megasuture between the two belts ,lies between the Fengxian Shangnan line in the north and the Shanyang Xijia line in the south and was much deformed and displaced through Mesozoic intracratonic collision and compression.In the northern subdomain the Lower Proterozoic is represented by protoaulacogen volcano-sediments , the inner Tiedonggou Group and the outer marginal Qinling Group , which were folded and metamorphosed in the Luliangian orogeny ,a general process of aggregation and stabilization of the Early Proterozoic mobile belts between and around the Archaean nuclei. Genuine aulacogen occurred in the Middle Proterozoic and was represented by the Xionger rift volcanics . The Middle and Upper Proterozoic comprise the inner Guandaokou shelf sediments and the outer extensional' back- arc' Kuanping Group behind the Qinling island chain . Oceanic subduction from the south of the Qinling arc representing the Jinningian orogeny caused the folding of the Mid dle and Upper Proterozoic and emplacement of island arc-continent collision type of granite . After the Jinningian orogeny Late Sinian glacigene deposits formed the platform cover and the Erlangping back arc basin began to develop on the northern slope of the Qinling arc .In South Qinling the Lower Proterozoic Tongbe Group was probably an original marginal part of the Yangtze Platform . The passive margin began rifting in Middle Proterozoic with the formation of the inner Shennongjia aulacogen and the outer marginal Wudang aulacogen. Deformation of the Wudang and Douling groups indicating Jinningian Movement seemed to have been caused by a southward compression of the Tongbe Massif. Resumed rifting in the Sinian evidenced by the sedimentary facies pattern caused the northward separation of the Douling Massif, which formed part of the Fuping-Zhenan island chain , the northern boundary of the South Qinling Belt. In the western part of South Qinling , in the Hanzhong region , the Middle and Upper Proterozoic are represented by the Huodiya shelf sediments and the Xixiang marginal volcano sedimentaries , The Jinningian orogeny is well represented by the deformed Xixiang Group and the subduction pattern of magmatism from north to south in the Beiba area . It seems that the genuine arc-basin system in the continental margin and the aulacogen in the inner part of the platform began in the Middle Proterozoic (1800 Ma), which marks the beginning of a new tectonic megastage in lithosphere evolution. 展开更多
关键词 PROTEROZOIC East Qinling continental margin .
下载PDF
Geothermal investigation of the thickness of gas hydrate stability zone in the north continental margin of the South China Sea 被引量:3
8
作者 WANG Yanmin LIU Shaowen +2 位作者 HAO Feifei ZHAO Yunlong HAO Chunyan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第4期72-79,共8页
The exploration of unconventional and/or new energy resources has become the focus of energy research worldwide,given the shortage of fossil fuels.As a potential energy resource,gas hydrate exists only in the environm... The exploration of unconventional and/or new energy resources has become the focus of energy research worldwide,given the shortage of fossil fuels.As a potential energy resource,gas hydrate exists only in the environment of high pressure and low temperature,mainly distributing in the sediments of the seafloor in the continental margins and the permafrost zones in land.The accurate determination of the thickness of gas hydrate stability zone is essential yet challenging in the assessment of the exploitation potential.The majority of previous studies obtain this thickness by detecting the bottom simulating reflectors(BSRs) layer on the seismic profiles.The phase equilibrium between gas hydrate stable state with its temperature and pressure provides an opportunity to derive the thickness with the geothermal method.Based on the latest geothermal dataset,we calculated the thickness of the gas hydrate stability zone(GHSZ) in the north continental margin of the South China Sea.Our results indicate that the thicknesses of gas hydrate stability zone vary greatly in different areas of the northern margin of the South China Sea.The thickness mainly concentrates on 200–300 m and distributes in the southwestern and eastern areas with belt-like shape.We further confirmed a certain relationship between the GHSZ thickness and factors such as heat flow and water depth.The thickness of gas hydrate stability zone is found to be large where the heat flow is relatively low.The GHSZ thickness increases with the increase of the water depth,but it tends to stay steady when the water depth deeper than 3 000 m.The findings would improve the assessment of gas hydrate resource potential in the South China Sea. 展开更多
关键词 gas hydrate thickness of stability zone heat flow continental margin South China Sea
下载PDF
The Characteristics of the Indosinian Pacific-Type Ancient Continental Margin in the Qinghai-Xizang(Tibet)-Sichuan-Yunnan Region 被引量:1
9
作者 Gao Yanlin Qinghai Provincial Commission for Science and Technology,Xining, Qinghai Jiang Minxi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1991年第1期1-18,共18页
The Qinghai-Xizang (Tibet) Plateau and the 'Sanjiang' area②, where are extensively developed theTethys-type marine Triassic sequences with Indosinian tectonic disturbance and magmatism, provide an impor-tant ... The Qinghai-Xizang (Tibet) Plateau and the 'Sanjiang' area②, where are extensively developed theTethys-type marine Triassic sequences with Indosinian tectonic disturbance and magmatism, provide an impor-tant region for the study of the tectonic evolution and the Indosinian movement of China as well as for thestudy of the boundary between Gondwana and Laurasia and the characteristics of the time-space distributionof the Tethys oceanic crust within the territory of China. Over a long period of time in the past, quite a numberof scholars made substantial studies and discussious from various viewpoints on the geotectonie and regionalgeological evolution of this region. Based on some new data obtained recently and the field observations by theauthor, and by using the plate tectonic theory, the author considers that there developed a Pacific-type (activetype) ancient continental margin bordering the Palaeo-Tethys ocean (or North Tethys ocean) in the south inLate Permian to Triassic times in the region of south-central Qinghai, northeastern Xizang (Tibet), western andsouthwestern Sichuan, and western Yunnan. Its characteristics basically represent the Indosinian tectonic evo-lution of this region. 展开更多
关键词 TIBET The Characteristics of the Indosinian Pacific-Type Ancient continental margin in the Qinghai-Xizang
下载PDF
The architecture of the lower parts of submarine canyons on the western Nigerian continental margin
10
作者 JIMOH Rasheed Olayinka TANG Yong +4 位作者 LI Jiabiao AWOSIKA Larry Folajimi LI He AKINNIGBAGE Edward Akintoye ADELEYE Adedayo Oluwaseun 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第7期28-40,共13页
Multi-beam,sub-bottom and multichannel seismic data acquired from the western Nigerian continental margin are analysed and interpreted to examine the architectural characteristics of the lower parts of the submarine c... Multi-beam,sub-bottom and multichannel seismic data acquired from the western Nigerian continental margin are analysed and interpreted to examine the architectural characteristics of the lower parts of the submarine canyons on the margin.The presence of four canyons: Avon,Mahin,Benin,and Escravos,are confirmed from the multi-beam data map and identified as cutting across the shelf and slope areas,with morphological features ranging from axial channels,moderate to high sinuosity indices,scarps,terraces and nickpoints which are interpreted as resulting from erosional and depositional activities within and around the canyons.The Avon Canyon,in particular,is characterised by various branches and sub-branches with complex morphologies.The canyons are mostly U-shaped in these lower parts with occasional V-shapes down their courses.Their typical orientation is NE–SW.Sedimentary processes are proposed as being a major controlling factor in these canyons.Sediments appear to have been discharged directly into the canyons by rivers during the late Quaternary low sea level which allows river mouths to extend as far as the shelf edge.The current sediment supply is still primarily sourced from these rivers in the case of the Benin and Escravos Canyons,but indirectly in the case of the Avon and Mahin Canyons where the rivers discharge sediments into the lagoons and the lagoons bring the sediments on to the continental shelf before they are dispersed into the canyon heads.Ancient canyons that have long been buried underneath the Avon Canyon are identified in the multichannel seismic profile across the head of the Avon Canyon,while a number of normal faults around the walls of the Avon and Mahin Canyons are observed in the selected sub-bottom profiles.The occurrence of these faults,especially in the irregular portions of the canyon walls,suggests that they also have some effect on the canyon architecture.The formation of the canyons is attributed to the exposure of the upper marginal area to incisions from erosion during the sea level lowstand of the glacial period.The incisions are widened and lengthened by contouric currents,turbidity currents and slope failures resulting in the canyons. 展开更多
关键词 western Nigerian continental margin submarine canyons ARCHITECTURE controlling factors sedimentary processes tectonic evolution
下载PDF
Numerical modeling of the development of southeastern Red Sea continental margin
11
作者 Sunil Kumar Dwivedi Daigoro Hayashi 《Earthquake Science》 CSCD 2009年第3期239-249,共11页
The Red Sea continental margin (RSCM) corresponds to a wide hinge zone between Red Sea and Arabian plate. This margin has been studied through geological and geophysical observations primarily in regard to the evolu... The Red Sea continental margin (RSCM) corresponds to a wide hinge zone between Red Sea and Arabian plate. This margin has been studied through geological and geophysical observations primarily in regard to the evolution of Red Sea rift. This margin is characterized by occurrence of thin sediments, significant onshore uplift, tectonic subsidence of the offshore sedimentary basin, active faulting and seismicity. Studies indicate that sedimentary sequences of the margin are deformed by faults and folds resulting from at least two phases of extension and a phase of uplift. During the two phases of extension due to regional plate stress the sequence was cut by set of extensional faults. While during the phase of uplift the sequence was deformed by folding and faulting. The present paper aims to clear the structural development of RSCM during these tectonic episodes, taken as particular tectonic event, by two-dimensional finite element modeling on plane strain condition. Elastic theology is assumed for the oceanic, continental and transitional crust along with syntectonic deposits. Stress field, shear stress and fault distribution suggests that mantle plume weakened the crust following rifting due to regional stress and developed the margin. These results are well consistent with those from present seismicity, active faulting and neotectonic studies. 展开更多
关键词 Red Sea rift continental margin numerical modeling SEISMICITY NEOTECTONICS
下载PDF
Asymmetric Atlantic continental margins
12
作者 Adriano Vangone Carlo Doglioni 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第5期298-308,共11页
We analyze the gross crustal structure of the Atlantic Ocean passive continental margins from north to the south,comparing eleven sections of the conjugate margins.As a general result,the western margins show a sharpe... We analyze the gross crustal structure of the Atlantic Ocean passive continental margins from north to the south,comparing eleven sections of the conjugate margins.As a general result,the western margins show a sharper continental-ocean transition with respect to the eastern margins that rather show a wider stretched and thinner margin.The Moho is in average about 5.7±1dipping toward the interior of the continent on the western side,whereas it is about 2.7±1in the eastern margins.Moreover,the stretched continental crust is on average 244 km wide on the western side,whereas it is up to about 439 km on the eastern side of the Atlantic.This systematic asymmetry reflects the early stages of the diachronous Mesozoic to Cenozoic continental rifting,which is inferred as the result of a polarized westward motion of both western and eastern plates,being Greenland,Northern and Southern Americas plates moving westward faster with respect to Scandinavia,Europe and Africa,relative to the underlying mantle. 展开更多
关键词 Passive continental margin Asymmetric rift Moho dip continental-ocean transition Westward drift of the lithosphere
下载PDF
Thermo-Rheological Structure and Passive Continental Margin Rifting in the Qiongdongnan Basin, South China Sea, China
13
作者 LI Chaoyang JIANG Xiaodian GONG Wei 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第2期347-360,共14页
To investigate the thermo-rheological structure and passive continental margin rifting in the Qiongdongnan Basin(QDNB),thermo-rheological models of two profiles across the western and eastern QDNB are presented.The co... To investigate the thermo-rheological structure and passive continental margin rifting in the Qiongdongnan Basin(QDNB),thermo-rheological models of two profiles across the western and eastern QDNB are presented.The continental shelf of western QDNB,having the lowest crustal extension factor,is recognized as the initial non-uniform extension crust model.This regime is referred to as the jelly sandwich-1(JS-1)regime,having a lower crustal ductile layer.The oceanward part of the western QDNB changes from the relatively strong JS-1 to the weak crème brûlée-1(CB-1)regime with a significantly thinned lower crust.However,the crustal extension in the eastern QDNB is significantly higher than that in the western QDNB,with conjugate faults extending deep into the lower crust.The central depression zone of the eastern QDNB is defined as the much stronger JS-2 regime,having a brittle deformation across the entire crust and upper mantle and characteristics of a cold and rigid oceanic crust.Unlike the widespread lower crustal high-velocity layers(HVLs)in the northern margin of the South China Sea,the HVLs are confined to the lower crustal base of the central depression zone of the QDNB.The HVLs of QDNB are the results of non-uniform extension with mantle underplating during the lower crustal-necking stage,which is facilitated by the lower crustal ductile layer and derived by mantle lat-eral flowing.The gigantic mantle low-velocity zone related to the Red River Fault should be a necessary factor for the east-west differential margin rifting process of QDNB,which may drive the lateral flowing in the mantle. 展开更多
关键词 Qiongdongnan Basin thermo-rheological structure continental margin rifting high-velocity layer
下载PDF
Characteristics and origin of continental marginal fault depressions under the background of preexisting subduction continental margin,northern South China Sea,China
14
作者 PANG Xiong ZHENG Jinyun +4 位作者 MEI Lianfu LIU Baojun ZHANG Zhongtao WU Zhe Feng Xuan 《Petroleum Exploration and Development》 CSCD 2021年第5期1237-1250,共14页
Based on the new seismic and drilling data and the recent related research results,this paper systematically analyzes the diversity and complexity of evolution process of crustal lithosphere structure and basin struct... Based on the new seismic and drilling data and the recent related research results,this paper systematically analyzes the diversity and complexity of evolution process of crustal lithosphere structure and basin structure in the Pearl River Mouth Basin on the northern margin of the South China Sea.Three types of detachment faults of different structural levels exist:crust-mantle detachment,inter-crust detachment and upper crust detachment.It is considered that different types of extensional detachment control different subbasin structures.Many fault depressions controlled by upper crust detachment faults have been found in the Zhu I Depression located in the proximal zone.These detachment faults are usually reformed by magma emplacement or controlled by preexisting faults.Baiyun-Liwan Sag located in the hyperextension area shows different characteristics of internal structure.The Baiyun main sag with relative weak magmatism transformation is a wide-deep fault depression,which is controlled by crust-mantle detachment system.Extensive magmatism occurred in the eastern and southwest fault steps of the Baiyun Sag after Middle Eocene,and the crust ductile extensional deformation resulted in wide-shallow fault depression controlled by the upper crust detachment fault.Based on the classical lithosphere extensional breaking and basin tectonic evolution in the Atlantic margin,it is believed that the magmatic activities and pre-existing structures in the Mesozoic subduction continental margin background are important controlling factors for the diversified continental margin faulted structures in the northern South China Sea. 展开更多
关键词 northern continental margin of South China Sea preexisting structure MAGMATISM multilevel detachment faults fault depression structure Pearl River Mouth Basin
下载PDF
Middle and Late Tertiary Palaeogeography and Palaeoenvironment on the Northern Continental Margin of the South China Sea
15
作者 Duan Weiwu Huang Yongyang Guangzhou Marine Geological Survey, Ministry of Geology and Mineral Resources, Guangzhou, Guangdong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1990年第2期211-222,共12页
Based essentially on research results of calcareous nannofossils, combined with some other microfossil da-ta and several secondary depositional breaks, this paper discusses the criteria of division and comparison of t... Based essentially on research results of calcareous nannofossils, combined with some other microfossil da-ta and several secondary depositional breaks, this paper discusses the criteria of division and comparison of themiddle and late Tertiary marine sediments, palaeogeographical and palaeoenvironmental evolution andpalaeoclimates on the northern continental margin of the South China Sea, comprising the Tainan basin, PearlRiver Mouth basin. Southeast Hainan basin and Beibu Gulf basin. Study shows that the upper Oligocene toPliocene strata in the whole area consist essentially of marine sediments except in the Beibu Gulf basin. Theyinclude littoral. neritic and deltaic sediments as well as carbonate rock-bioherm limestone. The sea advancedfrom southeast to northwest. During the transgression there appeared three culminations coinciding to thestages of deposition of nannofossil zones NN4-5, NN11 and 13-15. 展开更多
关键词 Middle and Late Tertiary Palaeogeography and Palaeoenvironment on the Northern continental margin of the South China Sea
下载PDF
Patterns and Dynamics of Rifting on Passive Continental Margin from Shelf to Slope of the Northern South China Sea:Evidence from 3D Analogue Modeling 被引量:14
16
作者 孙珍 周蒂 +4 位作者 吴世敏 钟志洪 Myra Keep 姜建群 樊浩 《Journal of China University of Geosciences》 SCIE CSCD 2009年第1期136-146,共11页
Affected by thermal perturbation due to mantle uprising, the rheological structure of the lithosphere could be modified, which could lead to different rifting patterns from shelf to slope in a passive continental marg... Affected by thermal perturbation due to mantle uprising, the rheological structure of the lithosphere could be modified, which could lead to different rifting patterns from shelf to slope in a passive continental margin. From the observed deformation style on the northern South China Sea and analogue modeling experiments, we find that the rift zone located on the shelf is characterized by half grabens or simple grabens controlled mainly by long faults with large vertical offset, supposed to be formed with normal lithosphere extension. On the slope, where the lithosphere is very hot due to mantle upweUing and heating, composite grabens composed of symmetric grabens developed. The boundary and inner faults are all short with small vertical offset. Between the zones with very hot and normal lithosphere, composite half grabens composed of half grabens or asymmetric grabens formed, whose boundary faults are long with large vertical offset, while the inner faults are relatively short. Along with the thickness decrease of the brittle upper crust due to high temperature, the deformation becomes more sensitive to the shape of a pre-existing weakness zone and shows orientation variation along strike. When there was a bend in the pre-existing weakness zone, and the basal plate was pulled by a clockwise rotating stress, the strongest deformation always occurs along the middle segment and at the transition area from the middle to the eastern segments, which contributes to a hotter lithosphere in the middle segment, where the Baiyun (白云) sag formed. 展开更多
关键词 passive continental margin rifting pattern 3D analogue modeling South China Sea.
原文传递
Lithospheric Thermal Isostasy of North Continental Margin of the South China Sea 被引量:3
17
作者 陈石 张健 +1 位作者 孙玉军 石耀霖 《Journal of China University of Geosciences》 SCIE CSCD 2009年第1期95-106,共12页
Accompanied with rifting and detaching of the north continental margin of the South China Sea, the crust and the lithosphere become thinner away from the continental margin resulting from the tectonic activities, such... Accompanied with rifting and detaching of the north continental margin of the South China Sea, the crust and the lithosphere become thinner away from the continental margin resulting from the tectonic activities, such as tensile deformation, thermal uplift, and cooling subsidence, etc.. Integrated with thermal, gravimetric, and isostatic analysis techniques, based on the seismic interpretation of the deep penetration seismic soundings across the northern margin of the South China Sea, we reconstructed the lithospheric thermal structure and derived the variation of the crust boundary in the east and west parts of the seismic profile by using gravity anomaly data. We mainly studied the thermal isostasy problems using the bathymetry of the profiles and calculated the crust thinning effect due to the thermal variety in the rifting process. The results indicate that the thermal isostasy may reach 2.5 km, and the compositional variations in the lithospheric density and thickness may produce a variation of 4.0 km. Therefore, the compositional isostatic correction is very important to recover the relationship between surface heat flow and topography. Moreover, because of the high heat flow characteristic of the continental margin, building the model of lithospheric geotherm in this region is of great importan for studying the Cenozoic tectonic thermal evolution of the north passive continental margin of the South China Sea. 展开更多
关键词 north continental margin of the South China Sea LITHOSPHERE geothermal thermal isostasy.
原文传递
Coupling Relationship between Shelf-Edge Trajectories and Slope Morphology and Its Implications for Deep-Water Oil and Gas Exploration: A Case Study from the Passive Continental Margin, East Africa
18
作者 Mengtian Gao Shang Xu +2 位作者 Haiteng Zhuo Yuxuan Wang Shaobo Wu 《Journal of Earth Science》 SCIE CAS CSCD 2020年第4期820-833,共14页
Both the shelf-edge trajectories and slope morphology are indicative of deep-water sedimentation, but previous studies are relatively independent from each other in the two dimensions. An integrated investigation can ... Both the shelf-edge trajectories and slope morphology are indicative of deep-water sedimentation, but previous studies are relatively independent from each other in the two dimensions. An integrated investigation can enhance the understanding of deep-water sedimentary systems and enrich reservoir prediction methods. Based on the bathymetry data and seismic data published, this study identified ten slope areas at the continental margin of East Africa and classified the clinoforms into three types: concave-up, sigmoidal and planar. Combined with the distribution of main modern rivers in East Africa, nine modern source-to-sink systems were identified and the catchment area is positively correlated with the size of the shelf-edge delta. It is found that the slope morphology of East Africa is closely related to the geological setting, sediment supply and sediment transport pathway in submarine canyon of passive continental margin. When the sediment supply is stable, the concave-up slopes are dominated by the river-associated and shelf-incising canyons and the sigmoidal slopes are determined by the headless canyons. There exists a strong coupling relationship between the shelf-edge trajectories and slope morphology. In general, concave-up slopes correspond to descending trend, flat and low-angle ascending trend shelf-edge trajectories and high-quality reservoirs developed on the basin floor under the influence of river-associated and shelf-incising canyons which have bright prospects for oil and gas exploration. Additionally, sigmoidal slopes usually correspond to descending trend, flat and low-angle ascending trend shelf-edge trajectories at times of relative sea-level fall and the reservoirs mostly developed on the upper slope under the influence of headless canyons. Moreover, the planar slopes correspond to high-angle ascending trend trajectories which are hardly potential for exploration. The coupling model built in this study will provide an insight for oil and gas exploration in deep-water areas with limited data and low exploration degree. 展开更多
关键词 shelf-edge trajectories slope morphology source to sink deep water sediment East Africa continental margin
原文传递
The sedimentary record of the Sanshui Basin:Implication to the Late Cretaceous tectonic evolution in the northern margin of South China Sea
19
作者 Zhe ZHANG Nianqiao FANG Zhen SUN 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期532-549,共18页
Whether the South China continental margin had shifted from active subduction to passive extension in the Late Cretaceous remains controversial.Located in the northernmost of the South China Sea continental margin,San... Whether the South China continental margin had shifted from active subduction to passive extension in the Late Cretaceous remains controversial.Located in the northernmost of the South China Sea continental margin,Sanshui Basin developed continuous stratigraphy from Lower Cretaceous to Eocene and provides precious outcrops to study the regional tectonic evolution during the Cretaceous.Therefore,we conducted field observations,petrology,clay mineralogy,geochemistry,and detrital zircon chronology analyses of sedimentary rocks from the Upper Cretaceous Sanshui Formation in Sanshui Basin.Results suggest that the Sanshui Basin is characterized as an intermoutane basin with multiple provenances,strong hydrodynamic environment,and proximal accumulation in the Late Cretaceous.An angular unconformity at the boundary between the Lower and Upper Cretaceous was observed in the basin.The sedimentary facies of the northern basin changed from lacustrine sedimentary environment in the Early Cretaceous to alluvial facies in the Late Cretaceous.The zircon U-Pb ages of granitic gravelly sandstone from Sanshui Formation prominently range from 100 Ma to 300 Ma,which is close to the deposition age of Sanshui Formation.The major and trace elements of the Late Cretaceous sedimentary samples show characteristics of active continental margin,and are different from the Paleogene rifting sequences.Hence,we propose that the northern South China Sea margin underwent an intense tectonic uplift at the turn of the Early and Late Cretaceous(around 100 Ma).Afterward,the northern South China Sea margin entered a wide extension stage in the Late Cretaceous(~100 to~80 Ma).This extensional phase is related to the back-arc extension in the active continental margin environment,which is different from the later passive rifting in the Cenozoic.The transition from active subduction to passive extension in the northern South China Sea may occur between the late Late Cretaceous and the Paleogene. 展开更多
关键词 continental margin South China Sea Sanshui Basin Late Cretaceous tectonic transition
下载PDF
Cambrian-early Ordovician volcanism across the South Armorican and Occitan domains of the Variscan Belt in France:Continental break-up and rifting of the northern Gondwana margin
20
作者 Andre Pouclet J.Javier Alvaro +3 位作者 Jacques-Marie Bardintzeff Andres Gil Imaz Eric Monceret Daniel Vizcaino 《Geoscience Frontiers》 SCIE CAS CSCD 2017年第1期25-64,共40页
The Cambrian-lower Ordovician volcanic units of the South Armorican and Occitan domains are ana- lysed in a tectonostratigraphic survey of the French Variscan Belt. The South Armorican lavas consist of continental tho... The Cambrian-lower Ordovician volcanic units of the South Armorican and Occitan domains are ana- lysed in a tectonostratigraphic survey of the French Variscan Belt. The South Armorican lavas consist of continental tholeiites in middle Camhrian-Furongian sequences related to continental break-up. A significant volcanic activity occurred in the Tremadocian, dominated by crustal melted rhyolitic lavas and initial rifting tholeiites. The Occitan lavas are distributed into five volcanic phases: (I) basal Cambrian rhyolites, (2) upper lower Cambrian Mg-rich tholeiites close to N-MORBs but crustal contaminated, (3) upper lower-middle Cambrian continental tholeiites, (4) Tremadocian rhyolites, and (5) upper lower Ordovician initial rift tholeiites. A rifting event linked to asthenosphere upwelling took place in the late early Cambrian but did not evolve. It renewed in the Tremadocian with abundant crustal melting due to underplating of mixed asthenospheric and lithospheric magmas. This main tectono-magmatic conti- nental rift is termed the "Tremadocian Tectonic Belt" underlined by a chain of rhyolitic volcanoes from Occitan and South Armorican domains to Central Iberia. It evolved with the setting of syn-rift coarse siliciclastic deposits overlain by post-rift deep water shales in a suite of sedimentary basins that fore- casted the South Armorican-Medio-European Ocean as a part of the Palaeotethys Ocean. 展开更多
关键词 Gondwana margin Cambro-Ordovician volcanic activity continental tholeiite Rheic Ocean Middle-European Ocean Palaeotethys Ocean
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部