Terahertz (THz) wave emission from argon atom in a two-color laser pulses is studied numerically by solving the one-dimensional (1D) time-dependent Schr6dinger equation. The THz spectra we obtained include both di...Terahertz (THz) wave emission from argon atom in a two-color laser pulses is studied numerically by solving the one-dimensional (1D) time-dependent Schr6dinger equation. The THz spectra we obtained include both discontinuous and continuum ones. By using the special basis functions that we previously proposed, our analysis points out that the discontinuous and continuum parts are contributed by bound-bound and continuum-continuum transition of atomic energy levels. Although the atomic wave function is strongly dressed during the interaction with laser fields, our identification for the discontinuous part of the THz wave shows that the transition between highly excited bound states can still be well described by the field-free basis function in the tunneling ionization regime.展开更多
Based on the field hyperspectral data from the analytical spectral devices (ASD) spectrometer, we characterized the spectral properties of rice canopies infested with brown spot disease and selected spectral regions...Based on the field hyperspectral data from the analytical spectral devices (ASD) spectrometer, we characterized the spectral properties of rice canopies infested with brown spot disease and selected spectral regions and bands sensitive to four severity degrees (severe, moderate, light, and healthy). The results show that the curves' variation on the original and the first- and second-order de- rivative curves are greatly different, but the spectral difference in the near-infrared region is the most obvious for each level. Specifically, the peaks are located at 822, 738, and 793 nm, while the valleys are located at 402, 570, and 753 run, respectively. The sensitive regions are between 430-520, 530-550, and 650-710 nm, and the bands are 498, 539, and 673 nm in the sensitivity analysis, while they are in the ranges of 401-530, 550-730 as well as at 498 nm and 678 nm in the continuum removal.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11465016,11374366,and 11164025)
文摘Terahertz (THz) wave emission from argon atom in a two-color laser pulses is studied numerically by solving the one-dimensional (1D) time-dependent Schr6dinger equation. The THz spectra we obtained include both discontinuous and continuum ones. By using the special basis functions that we previously proposed, our analysis points out that the discontinuous and continuum parts are contributed by bound-bound and continuum-continuum transition of atomic energy levels. Although the atomic wave function is strongly dressed during the interaction with laser fields, our identification for the discontinuous part of the THz wave shows that the transition between highly excited bound states can still be well described by the field-free basis function in the tunneling ionization regime.
基金Supported by the National Natural Science Foundation of China (41071276 and 41101395)China Postdoctoral Science Foundation (20110490317)Postdoctoral Science Foundation of Beijing Academy of Agriculture and Forestry Sciences (2011)
文摘Based on the field hyperspectral data from the analytical spectral devices (ASD) spectrometer, we characterized the spectral properties of rice canopies infested with brown spot disease and selected spectral regions and bands sensitive to four severity degrees (severe, moderate, light, and healthy). The results show that the curves' variation on the original and the first- and second-order de- rivative curves are greatly different, but the spectral difference in the near-infrared region is the most obvious for each level. Specifically, the peaks are located at 822, 738, and 793 nm, while the valleys are located at 402, 570, and 753 run, respectively. The sensitive regions are between 430-520, 530-550, and 650-710 nm, and the bands are 498, 539, and 673 nm in the sensitivity analysis, while they are in the ranges of 401-530, 550-730 as well as at 498 nm and 678 nm in the continuum removal.