This paper studies time-varying fault-tolerant formation tracking problems for the multiple cruise missile system under directed topologies subjected to actuator failures. Firstly, the timevarying fault-tolerant forma...This paper studies time-varying fault-tolerant formation tracking problems for the multiple cruise missile system under directed topologies subjected to actuator failures. Firstly, the timevarying fault-tolerant formation tracking process for the multiple cruise missile system is divided into the guidance loop and the control loop. Then protocols are constructed to accomplish distributed fault-tolerant formation tracking in the guidance loop with the adaptive updating mechanism, in the condition where neither the knowledge about actuator malfunctions nor any global information of the communication topology remains available. Moreover, sufficient conditions to accomplish formation tracking are presented, and it is shown that the multiple cruise missile system can carry on the predefined time-varying fault-tolerant control (FTC) formation tracking through the active disturbances rejection controller (ADRC) and the proportion integration (PI) controller by the way of the fault-tolerant protocol utilizing the designed strategies, in the event of actuator failures. At last, numerical analysis and simulation are designed to verify the theoretical results.展开更多
The key challenge of the extended target probability hypothesis density (ET-PHD) filter is to reduce the computational complexity by using a subset to approximate the full set of partitions. In this paper, the influen...The key challenge of the extended target probability hypothesis density (ET-PHD) filter is to reduce the computational complexity by using a subset to approximate the full set of partitions. In this paper, the influence for the tracking results of different partitions is analyzed, and the form of the most informative partition is obtained. Then, a fast density peak-based clustering (FDPC) partitioning algorithm is applied to the measurement set partitioning. Since only one partition of the measurement set is used, the ET-PHD filter based on FDPC partitioning has lower computational complexity than the other ET-PHD filters. As FDPC partitioning is able to remove the spatially close clutter-generated measurements, the ET-PHD filter based on FDPC partitioning has good tracking performance in the scenario with more clutter-generated measurements. The simulation results show that the proposed algorithm can get the most informative partition and obviously reduce computational burden without losing tracking performance. As the number of clutter-generated measurements increased, the ET-PHD filter based on FDPC partitioning has better tracking performance than other ET-PHD filters. The FDPC algorithm will play an important role in the engineering realization of the multiple extended target tracking filter.展开更多
In this paper,the problems of robust consensus tracking control for the second-order multi-agent system with uncertain model parameters and nonlinear disturbances are considered.An adaptive control strategy is propose...In this paper,the problems of robust consensus tracking control for the second-order multi-agent system with uncertain model parameters and nonlinear disturbances are considered.An adaptive control strategy is proposed to smooth the agent’s trajectory,and the neural network is constructed to estimate the system’s unknown components.The consensus conditions are demonstrated for tracking a leader with nonlinear dynamics under an adaptive control algorithm in the absence of model uncertainties.Then,the results are extended to the system with unknown time-varying disturbances by applying the neural network estimation to compensating for the uncertain parts of the agents’models.Update laws are designed based on the Lyapunov function terms to ensure the effectiveness of robust control.Finally,the theoretical results are verified by numerical simulations,and a comparative experiment is conducted,showing that the trajectories generated by the proposed method exhibit less oscillation and converge faster.展开更多
Traffic data collection is essential for performance assessment, safety improvement and road planning. While automated traffic data collection for highways is relatively mature, that for roundabouts is more challengin...Traffic data collection is essential for performance assessment, safety improvement and road planning. While automated traffic data collection for highways is relatively mature, that for roundabouts is more challenging due to more complex traffic scenes, data specifications and vehicle behavior. In this paper, the authors propose an automated traffic data collection system dedicated to roundabout scenes. The proposed system has mainly four steps of processing. First, camera calibration is performed for roundabout traffic scenes with a novel circle-based calibration algorithm. Second, the system uses enhanced Mixture of Gaussian algorithm with shaking removal for video segmentation, which can tolerate repeated camera displacements and background movements. Then, Kalman filtering, Kemel-based tracking and overlap-based opti- mization are employed to track vehicles while they are occluded and to derive the complete vehicle trajectories. The resulting vehicle trajectory of each individual vehicle gives the position, size, shape and speed of the vehicle at each time moment. Finally, a data mining algorithm is used to automatically extract the interested traffic data from the vehicle trajectories. The overall traffic data collection system has been implemented in software and runs on regular PC. The total processing time for a 3-hour video is currently 6 h. The automated traffic data collection system can significantly reduce cost and improve efficiency compared to manual data collection. The extracted traffic data have been compared to accurate manual measurements for 29 videos recorded on 29 different days, and an accuracy of more than 90% has been achieved.展开更多
Visual tracking has been widely applied in construction industry and attracted signifi-cant interests recently. Lots of research studies have adopted visual tracking techniques on the surveillance of construction work...Visual tracking has been widely applied in construction industry and attracted signifi-cant interests recently. Lots of research studies have adopted visual tracking techniques on the surveillance of construction workforce, project productivity and construction safety. Until now, visual tracking algorithms have gained promising performance when tracking un-articulated equipment in construction sites. However, state-of-art tracking algorithms have unguaranteed performance in tracking articulated equipment, such as backhoes and excavators. The stretching buckets and booms are the main obstacles of successfully tracking articulated equipment. In order to fill this knowledge gap, the part-based tracking algorithms are introduced in this paper for tracking articulated equipment in construction sites. The part-based tracking is able to track different parts of target equipment while using multiple tracking algorithms at the same sequence. Some existing tracking methods have been chosen according to their outstanding performance in the computer vision community. Then, the part-based algorithms were created on the basis of selected visual tracking methods and tested by real construction sequences. In this way, the tracking performance was evaluated from effectiveness and robustness aspects. Throughout the quantification analysis, the tracking performance of articulated equipment was much more improved by using the part-based tracking algorithms.展开更多
This paper presents a new kernel-based algorithm for video object tracking called rebound of region of interest (RROI). The novel algorithm uses a rectangle-shaped section as region of interest (ROI) to represent and ...This paper presents a new kernel-based algorithm for video object tracking called rebound of region of interest (RROI). The novel algorithm uses a rectangle-shaped section as region of interest (ROI) to represent and track specific objects in videos. The proposed algorithm is constituted by two stages. The first stage seeks to determine the direction of the object’s motion by analyzing the changing regions around the object being tracked between two consecutive frames. Once the direction of the object’s motion has been predicted, it is initialized an iterative process that seeks to minimize a function of dissimilarity in order to find the location of the object being tracked in the next frame. The main advantage of the proposed algorithm is that, unlike existing kernel-based methods, it is immune to highly cluttered conditions. The results obtained by the proposed algorithm show that the tracking process was successfully carried out for a set of color videos with different challenging conditions such as occlusion, illumination changes, cluttered conditions, and object scale changes.展开更多
Recently, the National Typhoon Center (NTC) at the Korea Meteorological Administration launched a track-pattern-based model that predicts the horizontal distribution of tropical cyclone (TC) track density from Jun...Recently, the National Typhoon Center (NTC) at the Korea Meteorological Administration launched a track-pattern-based model that predicts the horizontal distribution of tropical cyclone (TC) track density from June to October. This model is the first approach to target seasonal TC track clusters covering the entire western North Pacific (WNP) basin, and may represent a milestone for seasonal TC forecasting, using a simple statistical method that can be applied at weather operation centers. In this note, we describe the procedure of the track-pattern-based model with brief technical background to provide practical information on the use and operation of the model. The model comprises three major steps. First, long-term data of WNP TC tracks reveal seven climatological track clusters. Second, the TC counts for each cluster are predicted using a hybrid statistical-dynamical method, using the seasonal prediction of large-scale environments. Third, the final forecast map of track density is constructed by merging the spatial probabilities of the seven clusters and applying necessary bias corrections. Although the model is developed to issue the seasonal forecast in mid-May, it can be applied to alternative dates and target seasons following the procedure described in this note. Work continues on establishing an automatic system for this model at the NTC.展开更多
Advances in wireless technologies and positioning technologies and spread of wireless devices, an interest in LBS(Location Based Service) is arising. To provide location based service, tracking data should have been s...Advances in wireless technologies and positioning technologies and spread of wireless devices, an interest in LBS(Location Based Service) is arising. To provide location based service, tracking data should have been stored in moving object database management system (called MODBMS) with proper policies and managed efficiently. So the methods which acquire the location information at regular time intervals then, store and manage have been studied. In this paper, we suggest tracking data management techniques using topology that is corresponding to the moving path of moving object. In our techniques, we update the MODBMS when moving object arrived at a street intersection or a curved road which is represented as the node in topology and predict the location at past and future with attribute of topology and linear function. In this technique, location data that are corresponding to the node in topology are stored, thus reduce the number of update and amount of data. Also in case predicting the location, because topology are used as well as existing location information, accuracy for prediction is increased than applying linear function or spline function.展开更多
A framework of real time face tracking and recognition is presented, which integrates skin color based tracking and PCA/BPNN (principle component analysis/back propagation neural network) hybrid recognition techni...A framework of real time face tracking and recognition is presented, which integrates skin color based tracking and PCA/BPNN (principle component analysis/back propagation neural network) hybrid recognition techniques. The algorithm is able to track the human face against a complex background and also works well when temporary occlusion occurs. We also obtain a very high recognition rate by averaging a number of samples over a long image sequence. The proposed approach has been successfully tested by many experiments, and can operate at 20 frames/s on an 800 MHz PC.展开更多
A model helicopter is more difficult to control than its full scale counterpart. This is due to its greater sensitivity to control inputs and disturbances as well as higher bandwidth of dynamics. This work is focused ...A model helicopter is more difficult to control than its full scale counterpart. This is due to its greater sensitivity to control inputs and disturbances as well as higher bandwidth of dynamics. This work is focused on designing practical tracking controller for a small scale helicopter following predefined trajectories. A tracking controller based on optimal control theory is synthesized as a part of the development of an autonomous helicopter. Some issues with regards to control constraints are addressed. The weighting between state tracking performance and control power expenditure is analyzed. Overall performance of the control design is evaluated based on its time domain histories of trajectories as well as control inputs.展开更多
The existing third-order tracker known as α-β-γ-δ filter has been used for target tracking and predicting for years. The filter can track the target's position and velocity, but not the acceleration. To extend it...The existing third-order tracker known as α-β-γ-δ filter has been used for target tracking and predicting for years. The filter can track the target's position and velocity, but not the acceleration. To extend its capability, a new fourth-order target tracker called α-β-γ-δ filter is proposed. The main objective of this study was to find the optimal set of filter parameters that leads to minimum position tracking errors. The tracking errors between using the α-β-γ-δ filter and the α-β-γ-δ filter are compared. As a result, the new filter exhibits significant improvement in position tracking accuracy over the existing third-order filter, but at the expense of computational time in search of the optimal filter. To reduce the computational time, a simulation-based optimization technique via Taguchi method is introduced.展开更多
The friction sheets working process was analyzed. It is found that its characteristic is microregion instantaneous high temperature and the current cooling method, making the sheets cooled by the lubricating oil flowi...The friction sheets working process was analyzed. It is found that its characteristic is microregion instantaneous high temperature and the current cooling method, making the sheets cooled by the lubricating oil flowing through the friction surface, is not very efficient. Then, intelligent materials concept was introduced, the component and microstructure of intelligent Cu-based friction materials were designed, and the intelligent Cu-based wet friction materials as well as sheets were manufactured. And the intelligent friction materials working principle, i.e. the materials cooling the friction microregion in real time or the friction sheets cutting the peak value of microregion instantaneous high temperature during friction process, was given depending on the characteristics of the materials’ and friction sheets’ working process. Finally, it is indicated that the intelligent friction sheets excell the currently used friction sheets in properties, including anti-heating property, anti-wearing property as well as friction characteristic.展开更多
Many wireless applications are deployed and available to customers via their mobile phones. Variety of these applications and services are based on determination of the current or future location of mobile user. Locat...Many wireless applications are deployed and available to customers via their mobile phones. Variety of these applications and services are based on determination of the current or future location of mobile user. Location based services (LBS) are one of the vital applications which are subdivided into two main categories: economical category and public category. Economic applications include mobile marketing, entertainment and tracking applications. Whereas, emergency cases, safety, traffic management, Muslims’ applications and public information applications are sort of public applications. The first part of the paper presents a new proposed system with developed procedure to recreate public and economic applications with high positioning accuracy and good authentication of users’ data. The developed system is created to enhance both location based services and network allocation resources within mobile network platform using either normal or GPS supported mobile equipment. The second part of the paper introduces future location prediction of mobile user dependent applications. New algorithm is developed depending on utilizing both intra-cell Movement Pattern algorithm (ICMP) [1] and hybrid uplink time Difference of Arrival and Assisted GPS technique (UTDOA_AGPS) [2]. It has been noticed that ICMP algorithm outperforms other future location prediction algorithms with high precision and within suitable time (less than 220) msec. However, UTDOA_AGPS guarantees high precession of mobile user independent of the surrounding environment. The proposed technique is used to enhance reliability and efficiency of location based services using cellular network platform.展开更多
In this paper we have proposed an object tracking method using Dual Tree Complex Wavelet Transform (DTCxWT). The proposed method is capable of tracking the moving object in video sequences. The object is assumed to be...In this paper we have proposed an object tracking method using Dual Tree Complex Wavelet Transform (DTCxWT). The proposed method is capable of tracking the moving object in video sequences. The object is assumed to be deform-able under limit i.e. it may change its shape from one frame to another. The basic idea in the proposed method is to decompose the image into two components: a two dimensional motion and a two dimensional shape change. The motion component is factored out while the shape is explicitly represented by storing a sequence of two dimensional models. Each model corresponds to each image frame. The proposed method performs well when the change in the shape in the consecutive frames is small however the 2-D motion in consecutive frames may be large. The proposed algorithm is capable of handling the partial as well as full occlusion of the object.展开更多
Detecting occluded objects is a crucial exercise in many spheres of application. For example in Strafing (attacking ground targets from low flying aircrafts) or vehicular tracking, continuous detection of the object e...Detecting occluded objects is a crucial exercise in many spheres of application. For example in Strafing (attacking ground targets from low flying aircrafts) or vehicular tracking, continuous detection of the object even when it is occluded by another object is essential. Failing to track the occluded object may result in completely losing its location or another object to be mistakenly tracked. Both of which will result in disastrous consequences. There are various methods to handle occlusions. In a previous research which was done by the author, a novel noise filtration mechanism based on the corrector equation of the Kalman filter which can be used with greater accuracy to handle lengthy occlusions was made. In this presentation, a further analysis of the error of the algorithm will be presented. The algorithm when compared with existing algorithms under the same test conditions gives promising results.展开更多
Solar energy is a widely used type of renewable energy.Photovoltaic arrays are used to harvest solar energy.The major goal,in harvesting the maximum possible power,is to operate the system at its maximum power point(M...Solar energy is a widely used type of renewable energy.Photovoltaic arrays are used to harvest solar energy.The major goal,in harvesting the maximum possible power,is to operate the system at its maximum power point(MPP).If the irradiation conditions are uniform,the P-V curve of the PV array has only one peak that is called its MPP.But when the irradiation conditions are non-uniform,the P-V curve has multiple peaks.Each peak represents an MPP for a specific irradiation condition.The highest of all the peaks is called Global Maximum Power Point(GMPP).Under uniform irradiation conditions,there is zero or no partial shading.But the changing irradiance causes a shading effect which is called Partial Shading.Many conventional and soft computing techniques have been in use to harvest solar energy.These techniques perform well under uniform and weak shading conditions but fail when shading conditions are strong.In this paper,a new method is proposed which uses Machine Learning based algorithm called Opposition-Based-Learning(OBL)to deal with partial shading conditions.Simulation studies on different cases of partial shading have proven this technique effective in attaining MPP.展开更多
The 3D object visual tracking problem is studied for the robot vision system of the 220kV/330kV high-voltage live-line insulator cleaning robot. The SUSAN Edge based Scale Invariant Feature (SESIF) algorithm based 3D ...The 3D object visual tracking problem is studied for the robot vision system of the 220kV/330kV high-voltage live-line insulator cleaning robot. The SUSAN Edge based Scale Invariant Feature (SESIF) algorithm based 3D objects visual tracking is achieved in three stages: the first frame stage,tracking stage,and recovering stage. An SESIF based objects recognition algorithm is proposed to find initial location at both the first frame stage and recovering stage. An SESIF and Lie group based visual tracking algorithm is used to track 3D object. Experiments verify the algorithm's robustness. This algorithm will be used in the second generation of the 220kV/330kV high-voltage live-line insulator cleaning robot.展开更多
This paper presents a novel Simulink models with an evaluation study of more widely used On-Line Maximum Power Point tracking(MPPT)techniques for Photo-Voltaic based Battery Storage Systems(PV-BSS).To have a full comp...This paper presents a novel Simulink models with an evaluation study of more widely used On-Line Maximum Power Point tracking(MPPT)techniques for Photo-Voltaic based Battery Storage Systems(PV-BSS).To have a full comparative study in terms of the dynamic response,battery state of charge(SOC),and oscillations around the Maximum Power Point(MPP)of the PV-BSS to variations in climate conditions,these techniques are simulated in Matlab/Simulink.The introduced methodologies are classified into two types;the first type is conventional hill-climbing techniques which are based on instantaneous PV data measurements such as Perturb&Observe and Incremental Conductance techniques.The second type is a novel proposed methodology is based on using solar irradiance and cell temperature measurements with pre-build Adaptive Neuro-Fuzzy Inference System(ANFIS)model to predict DC–DC converter optimum duty cycle to track MPP.Then evaluation study is introduced for conventional and proposed On-Line MPPT techniques.This comparative study can be useful in specifying the appropriateness of the MPPT techniques for PV-BSS.Also the introduced model can be used as a valued reference model for future research related to Soft Computing(SC)MPPT techniques.A significant improvement of SOC is achieved by the proposed model and methodology with high accuracy and lower oscillations.展开更多
This paper presents a semi-blind tracking algorithm used for Multiple Phase Shift Keying based Orthogonal Frequency Division Multiplexing(MPSK-OFDM) system. By using special pream-bles to assist the decision of a feed...This paper presents a semi-blind tracking algorithm used for Multiple Phase Shift Keying based Orthogonal Frequency Division Multiplexing(MPSK-OFDM) system. By using special pream-bles to assist the decision of a feedback loop and to solve the problem of phase ambiguity,the tracking performance of the algorithm has been improved greatly. Only a few preambles are needed in the al-gorithm since the preambles are not used to estimate the frequency offset but used to provide the variation information of the phase due to the presence of frequency offset. Simulations verify that the algorithm has low SNR bound for tracking as well as high tracking accuracy and the tracking range is expanded to 30% of one subcarrier spacing.展开更多
基金supported by the Natural Science Foundation of China(61101004 61803014)
文摘This paper studies time-varying fault-tolerant formation tracking problems for the multiple cruise missile system under directed topologies subjected to actuator failures. Firstly, the timevarying fault-tolerant formation tracking process for the multiple cruise missile system is divided into the guidance loop and the control loop. Then protocols are constructed to accomplish distributed fault-tolerant formation tracking in the guidance loop with the adaptive updating mechanism, in the condition where neither the knowledge about actuator malfunctions nor any global information of the communication topology remains available. Moreover, sufficient conditions to accomplish formation tracking are presented, and it is shown that the multiple cruise missile system can carry on the predefined time-varying fault-tolerant control (FTC) formation tracking through the active disturbances rejection controller (ADRC) and the proportion integration (PI) controller by the way of the fault-tolerant protocol utilizing the designed strategies, in the event of actuator failures. At last, numerical analysis and simulation are designed to verify the theoretical results.
基金Supported by National Natural Science Foundation of China (61304079, 61125306, 61034002), the Open Research Project from SKLMCCS (20120106), the Fundamental Research Funds for the Central Universities (FRF-TP-13-018A), and the China Postdoctoral Science. Foundation (201_3M_ 5305_27)_ _ _
文摘为有致动器浸透和未知动力学的分离时间的系统的一个班的一个新奇最佳的追踪控制方法在这份报纸被建议。计划基于反复的适应动态编程(自动数据处理) 算法。以便实现控制计划,一个 data-based 标识符首先为未知系统动力学被构造。由介绍 M 网络,稳定的控制的明确的公式被完成。以便消除致动器浸透的效果, nonquadratic 表演功能被介绍,然后一个反复的自动数据处理算法被建立与集中分析完成最佳的追踪控制解决方案。为实现最佳的控制方法,神经网络被用来建立 data-based 标识符,计算性能索引功能,近似最佳的控制政策并且分别地解决稳定的控制。模拟例子被提供验证介绍最佳的追踪的控制计划的有效性。
基金supported by the National Natural Science Foundation of China(61401475)
文摘The key challenge of the extended target probability hypothesis density (ET-PHD) filter is to reduce the computational complexity by using a subset to approximate the full set of partitions. In this paper, the influence for the tracking results of different partitions is analyzed, and the form of the most informative partition is obtained. Then, a fast density peak-based clustering (FDPC) partitioning algorithm is applied to the measurement set partitioning. Since only one partition of the measurement set is used, the ET-PHD filter based on FDPC partitioning has lower computational complexity than the other ET-PHD filters. As FDPC partitioning is able to remove the spatially close clutter-generated measurements, the ET-PHD filter based on FDPC partitioning has good tracking performance in the scenario with more clutter-generated measurements. The simulation results show that the proposed algorithm can get the most informative partition and obviously reduce computational burden without losing tracking performance. As the number of clutter-generated measurements increased, the ET-PHD filter based on FDPC partitioning has better tracking performance than other ET-PHD filters. The FDPC algorithm will play an important role in the engineering realization of the multiple extended target tracking filter.
基金supported by the Science&Technology Department of Sichuan Province under Grant No.2020YJ0044。
文摘In this paper,the problems of robust consensus tracking control for the second-order multi-agent system with uncertain model parameters and nonlinear disturbances are considered.An adaptive control strategy is proposed to smooth the agent’s trajectory,and the neural network is constructed to estimate the system’s unknown components.The consensus conditions are demonstrated for tracking a leader with nonlinear dynamics under an adaptive control algorithm in the absence of model uncertainties.Then,the results are extended to the system with unknown time-varying disturbances by applying the neural network estimation to compensating for the uncertain parts of the agents’models.Update laws are designed based on the Lyapunov function terms to ensure the effectiveness of robust control.Finally,the theoretical results are verified by numerical simulations,and a comparative experiment is conducted,showing that the trajectories generated by the proposed method exhibit less oscillation and converge faster.
文摘Traffic data collection is essential for performance assessment, safety improvement and road planning. While automated traffic data collection for highways is relatively mature, that for roundabouts is more challenging due to more complex traffic scenes, data specifications and vehicle behavior. In this paper, the authors propose an automated traffic data collection system dedicated to roundabout scenes. The proposed system has mainly four steps of processing. First, camera calibration is performed for roundabout traffic scenes with a novel circle-based calibration algorithm. Second, the system uses enhanced Mixture of Gaussian algorithm with shaking removal for video segmentation, which can tolerate repeated camera displacements and background movements. Then, Kalman filtering, Kemel-based tracking and overlap-based opti- mization are employed to track vehicles while they are occluded and to derive the complete vehicle trajectories. The resulting vehicle trajectory of each individual vehicle gives the position, size, shape and speed of the vehicle at each time moment. Finally, a data mining algorithm is used to automatically extract the interested traffic data from the vehicle trajectories. The overall traffic data collection system has been implemented in software and runs on regular PC. The total processing time for a 3-hour video is currently 6 h. The automated traffic data collection system can significantly reduce cost and improve efficiency compared to manual data collection. The extracted traffic data have been compared to accurate manual measurements for 29 videos recorded on 29 different days, and an accuracy of more than 90% has been achieved.
文摘Visual tracking has been widely applied in construction industry and attracted signifi-cant interests recently. Lots of research studies have adopted visual tracking techniques on the surveillance of construction workforce, project productivity and construction safety. Until now, visual tracking algorithms have gained promising performance when tracking un-articulated equipment in construction sites. However, state-of-art tracking algorithms have unguaranteed performance in tracking articulated equipment, such as backhoes and excavators. The stretching buckets and booms are the main obstacles of successfully tracking articulated equipment. In order to fill this knowledge gap, the part-based tracking algorithms are introduced in this paper for tracking articulated equipment in construction sites. The part-based tracking is able to track different parts of target equipment while using multiple tracking algorithms at the same sequence. Some existing tracking methods have been chosen according to their outstanding performance in the computer vision community. Then, the part-based algorithms were created on the basis of selected visual tracking methods and tested by real construction sequences. In this way, the tracking performance was evaluated from effectiveness and robustness aspects. Throughout the quantification analysis, the tracking performance of articulated equipment was much more improved by using the part-based tracking algorithms.
文摘This paper presents a new kernel-based algorithm for video object tracking called rebound of region of interest (RROI). The novel algorithm uses a rectangle-shaped section as region of interest (ROI) to represent and track specific objects in videos. The proposed algorithm is constituted by two stages. The first stage seeks to determine the direction of the object’s motion by analyzing the changing regions around the object being tracked between two consecutive frames. Once the direction of the object’s motion has been predicted, it is initialized an iterative process that seeks to minimize a function of dissimilarity in order to find the location of the object being tracked in the next frame. The main advantage of the proposed algorithm is that, unlike existing kernel-based methods, it is immune to highly cluttered conditions. The results obtained by the proposed algorithm show that the tracking process was successfully carried out for a set of color videos with different challenging conditions such as occlusion, illumination changes, cluttered conditions, and object scale changes.
基金funded by the Korea Meteorological Administration Research and Development Program under Grant CATER 2012-2040supported by the BK21 project of the Korean government
文摘Recently, the National Typhoon Center (NTC) at the Korea Meteorological Administration launched a track-pattern-based model that predicts the horizontal distribution of tropical cyclone (TC) track density from June to October. This model is the first approach to target seasonal TC track clusters covering the entire western North Pacific (WNP) basin, and may represent a milestone for seasonal TC forecasting, using a simple statistical method that can be applied at weather operation centers. In this note, we describe the procedure of the track-pattern-based model with brief technical background to provide practical information on the use and operation of the model. The model comprises three major steps. First, long-term data of WNP TC tracks reveal seven climatological track clusters. Second, the TC counts for each cluster are predicted using a hybrid statistical-dynamical method, using the seasonal prediction of large-scale environments. Third, the final forecast map of track density is constructed by merging the spatial probabilities of the seven clusters and applying necessary bias corrections. Although the model is developed to issue the seasonal forecast in mid-May, it can be applied to alternative dates and target seasons following the procedure described in this note. Work continues on establishing an automatic system for this model at the NTC.
文摘Advances in wireless technologies and positioning technologies and spread of wireless devices, an interest in LBS(Location Based Service) is arising. To provide location based service, tracking data should have been stored in moving object database management system (called MODBMS) with proper policies and managed efficiently. So the methods which acquire the location information at regular time intervals then, store and manage have been studied. In this paper, we suggest tracking data management techniques using topology that is corresponding to the moving path of moving object. In our techniques, we update the MODBMS when moving object arrived at a street intersection or a curved road which is represented as the node in topology and predict the location at past and future with attribute of topology and linear function. In this technique, location data that are corresponding to the node in topology are stored, thus reduce the number of update and amount of data. Also in case predicting the location, because topology are used as well as existing location information, accuracy for prediction is increased than applying linear function or spline function.
文摘A framework of real time face tracking and recognition is presented, which integrates skin color based tracking and PCA/BPNN (principle component analysis/back propagation neural network) hybrid recognition techniques. The algorithm is able to track the human face against a complex background and also works well when temporary occlusion occurs. We also obtain a very high recognition rate by averaging a number of samples over a long image sequence. The proposed approach has been successfully tested by many experiments, and can operate at 20 frames/s on an 800 MHz PC.
文摘A model helicopter is more difficult to control than its full scale counterpart. This is due to its greater sensitivity to control inputs and disturbances as well as higher bandwidth of dynamics. This work is focused on designing practical tracking controller for a small scale helicopter following predefined trajectories. A tracking controller based on optimal control theory is synthesized as a part of the development of an autonomous helicopter. Some issues with regards to control constraints are addressed. The weighting between state tracking performance and control power expenditure is analyzed. Overall performance of the control design is evaluated based on its time domain histories of trajectories as well as control inputs.
文摘The existing third-order tracker known as α-β-γ-δ filter has been used for target tracking and predicting for years. The filter can track the target's position and velocity, but not the acceleration. To extend its capability, a new fourth-order target tracker called α-β-γ-δ filter is proposed. The main objective of this study was to find the optimal set of filter parameters that leads to minimum position tracking errors. The tracking errors between using the α-β-γ-δ filter and the α-β-γ-δ filter are compared. As a result, the new filter exhibits significant improvement in position tracking accuracy over the existing third-order filter, but at the expense of computational time in search of the optimal filter. To reduce the computational time, a simulation-based optimization technique via Taguchi method is introduced.
文摘The friction sheets working process was analyzed. It is found that its characteristic is microregion instantaneous high temperature and the current cooling method, making the sheets cooled by the lubricating oil flowing through the friction surface, is not very efficient. Then, intelligent materials concept was introduced, the component and microstructure of intelligent Cu-based friction materials were designed, and the intelligent Cu-based wet friction materials as well as sheets were manufactured. And the intelligent friction materials working principle, i.e. the materials cooling the friction microregion in real time or the friction sheets cutting the peak value of microregion instantaneous high temperature during friction process, was given depending on the characteristics of the materials’ and friction sheets’ working process. Finally, it is indicated that the intelligent friction sheets excell the currently used friction sheets in properties, including anti-heating property, anti-wearing property as well as friction characteristic.
文摘Many wireless applications are deployed and available to customers via their mobile phones. Variety of these applications and services are based on determination of the current or future location of mobile user. Location based services (LBS) are one of the vital applications which are subdivided into two main categories: economical category and public category. Economic applications include mobile marketing, entertainment and tracking applications. Whereas, emergency cases, safety, traffic management, Muslims’ applications and public information applications are sort of public applications. The first part of the paper presents a new proposed system with developed procedure to recreate public and economic applications with high positioning accuracy and good authentication of users’ data. The developed system is created to enhance both location based services and network allocation resources within mobile network platform using either normal or GPS supported mobile equipment. The second part of the paper introduces future location prediction of mobile user dependent applications. New algorithm is developed depending on utilizing both intra-cell Movement Pattern algorithm (ICMP) [1] and hybrid uplink time Difference of Arrival and Assisted GPS technique (UTDOA_AGPS) [2]. It has been noticed that ICMP algorithm outperforms other future location prediction algorithms with high precision and within suitable time (less than 220) msec. However, UTDOA_AGPS guarantees high precession of mobile user independent of the surrounding environment. The proposed technique is used to enhance reliability and efficiency of location based services using cellular network platform.
文摘In this paper we have proposed an object tracking method using Dual Tree Complex Wavelet Transform (DTCxWT). The proposed method is capable of tracking the moving object in video sequences. The object is assumed to be deform-able under limit i.e. it may change its shape from one frame to another. The basic idea in the proposed method is to decompose the image into two components: a two dimensional motion and a two dimensional shape change. The motion component is factored out while the shape is explicitly represented by storing a sequence of two dimensional models. Each model corresponds to each image frame. The proposed method performs well when the change in the shape in the consecutive frames is small however the 2-D motion in consecutive frames may be large. The proposed algorithm is capable of handling the partial as well as full occlusion of the object.
文摘Detecting occluded objects is a crucial exercise in many spheres of application. For example in Strafing (attacking ground targets from low flying aircrafts) or vehicular tracking, continuous detection of the object even when it is occluded by another object is essential. Failing to track the occluded object may result in completely losing its location or another object to be mistakenly tracked. Both of which will result in disastrous consequences. There are various methods to handle occlusions. In a previous research which was done by the author, a novel noise filtration mechanism based on the corrector equation of the Kalman filter which can be used with greater accuracy to handle lengthy occlusions was made. In this presentation, a further analysis of the error of the algorithm will be presented. The algorithm when compared with existing algorithms under the same test conditions gives promising results.
基金supported by the Xiamen University Malaysia Research Fund XMUMRF Grant No:XMUMRF/2019-C3/IECE/0007(received by R.M.Mehmood)The authors are grateful to the Taif University Researchers Supporting Project Number(TURSP-2020/79),Taif University,Taif,Saudi Arabia for funding this work(received by M.Shorfuzzaman).
文摘Solar energy is a widely used type of renewable energy.Photovoltaic arrays are used to harvest solar energy.The major goal,in harvesting the maximum possible power,is to operate the system at its maximum power point(MPP).If the irradiation conditions are uniform,the P-V curve of the PV array has only one peak that is called its MPP.But when the irradiation conditions are non-uniform,the P-V curve has multiple peaks.Each peak represents an MPP for a specific irradiation condition.The highest of all the peaks is called Global Maximum Power Point(GMPP).Under uniform irradiation conditions,there is zero or no partial shading.But the changing irradiance causes a shading effect which is called Partial Shading.Many conventional and soft computing techniques have been in use to harvest solar energy.These techniques perform well under uniform and weak shading conditions but fail when shading conditions are strong.In this paper,a new method is proposed which uses Machine Learning based algorithm called Opposition-Based-Learning(OBL)to deal with partial shading conditions.Simulation studies on different cases of partial shading have proven this technique effective in attaining MPP.
基金National High Technology Research and Development Programof China (863program,No.2002AA42D110-2)
文摘The 3D object visual tracking problem is studied for the robot vision system of the 220kV/330kV high-voltage live-line insulator cleaning robot. The SUSAN Edge based Scale Invariant Feature (SESIF) algorithm based 3D objects visual tracking is achieved in three stages: the first frame stage,tracking stage,and recovering stage. An SESIF based objects recognition algorithm is proposed to find initial location at both the first frame stage and recovering stage. An SESIF and Lie group based visual tracking algorithm is used to track 3D object. Experiments verify the algorithm's robustness. This algorithm will be used in the second generation of the 220kV/330kV high-voltage live-line insulator cleaning robot.
基金The Deanship of Scientific Research at Najran University has supported this work,under the General Research Funding program grant code(NU/-/SERC/10/650).
文摘This paper presents a novel Simulink models with an evaluation study of more widely used On-Line Maximum Power Point tracking(MPPT)techniques for Photo-Voltaic based Battery Storage Systems(PV-BSS).To have a full comparative study in terms of the dynamic response,battery state of charge(SOC),and oscillations around the Maximum Power Point(MPP)of the PV-BSS to variations in climate conditions,these techniques are simulated in Matlab/Simulink.The introduced methodologies are classified into two types;the first type is conventional hill-climbing techniques which are based on instantaneous PV data measurements such as Perturb&Observe and Incremental Conductance techniques.The second type is a novel proposed methodology is based on using solar irradiance and cell temperature measurements with pre-build Adaptive Neuro-Fuzzy Inference System(ANFIS)model to predict DC–DC converter optimum duty cycle to track MPP.Then evaluation study is introduced for conventional and proposed On-Line MPPT techniques.This comparative study can be useful in specifying the appropriateness of the MPPT techniques for PV-BSS.Also the introduced model can be used as a valued reference model for future research related to Soft Computing(SC)MPPT techniques.A significant improvement of SOC is achieved by the proposed model and methodology with high accuracy and lower oscillations.
基金the Natural Science Foundation of Jiangsu Province (BK2006701)the National Natural Science Foundation of China (No.60672079).
文摘This paper presents a semi-blind tracking algorithm used for Multiple Phase Shift Keying based Orthogonal Frequency Division Multiplexing(MPSK-OFDM) system. By using special pream-bles to assist the decision of a feedback loop and to solve the problem of phase ambiguity,the tracking performance of the algorithm has been improved greatly. Only a few preambles are needed in the al-gorithm since the preambles are not used to estimate the frequency offset but used to provide the variation information of the phase due to the presence of frequency offset. Simulations verify that the algorithm has low SNR bound for tracking as well as high tracking accuracy and the tracking range is expanded to 30% of one subcarrier spacing.