Currently, horizontal well fracturing is indispensable for shale gas development. Due to the variable reservoir formation morphology, the drilling trajectory often deviates from the high-quality reservoir,which increa...Currently, horizontal well fracturing is indispensable for shale gas development. Due to the variable reservoir formation morphology, the drilling trajectory often deviates from the high-quality reservoir,which increases the risk of fracturing. Accurately recognizing low-amplitude structures plays a crucial role in guiding horizontal wells. However, existing methods have low recognition accuracy, and are difficult to meet actual production demand. In order to improve the drilling encounter rate of high-quality reservoirs, we propose a method for fine recognition of low-amplitude structures based on the non-subsampled contourlet transform(NSCT). Firstly, the seismic structural data are analyzed at multiple scales and directions using the NSCT and decomposed into low-frequency and high-frequency structural components. Then, the signal of each component is reconstructed to eliminate the low-frequency background of the structure, highlight the structure and texture information, and recognize the low-amplitude structure from it. Finally, we combined the drilled horizontal wells to verify the low-amplitude structural recognition results. Taking a study area in the west Sichuan Basin block as an example, we demonstrate the fine identification of low-amplitude structures based on NSCT. By combining the variation characteristics of logging curves, such as organic carbon content(TOC), natural gamma value(GR), etc., the real structure type is verified and determined, and the false structures in the recognition results are checked. The proposed method can provide reliable information on low-amplitude structures for optimizing the trajectory of horizontal wells. Compared with identification methods based on traditional wavelet transform and curvelet transform, NSCT enhances the local features of low-amplitude structures and achieves finer mapping of low-amplitude structures, showing promise for application.展开更多
A novel algorithm for image edge detection is presented. This algorithm combines the nonsubsampled contourlet transform and the mathematical morphology. First, the source image is decomposed by the nonsubsampled conto...A novel algorithm for image edge detection is presented. This algorithm combines the nonsubsampled contourlet transform and the mathematical morphology. First, the source image is decomposed by the nonsubsampled contourlet transform into multi-scale and multi-directional subbands. Then the edges in the high-frequency and low-frequency sub-bands are respectively extracted by the dualthreshold modulus maxima method and the mathematical morphology operator. Finally, the edges from the high- frequency and low-frequency sub-bands are integrated to the edges of the source image, which are refined, and isolated points are excluded to achieve the edges of the source image. The simulation results show that the proposed algorithm can effectively suppress noise, eliminate pseudo-edges and overcome the adverse effects caused by uneven illumination to a certain extent. Compared with the traditional methods such as LoG, Sobel, and Carmy operators and the modulus maxima algorithm, the proposed method can maintain sufficient positioning accuracy and edge details, and it can also make an improvement in the completeness, smoothness and clearness of the outline.展开更多
A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low freq...A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low frequency image and several high frequency images, and the scale-invariant feature transform is employed to extract feature points from the low frequency im- age. A proximity matrix is constructed for the feature points of two related images. By singular value decomposition of the proximity matrix, a matching matrix (or matching result) reflecting the match- ing degree among feature points is obtained. Experimental results indicate that the proposed algorithm can reduce time complexity and possess a higher accuracy.展开更多
A directional filter algorithm for intensity synthetic aperture radar (SAR) image based on nonsubsampled contourlet transform (NSCT) and immune clonal selection (ICS) is presented. The proposed filter mainly foc...A directional filter algorithm for intensity synthetic aperture radar (SAR) image based on nonsubsampled contourlet transform (NSCT) and immune clonal selection (ICS) is presented. The proposed filter mainly focuses on exploiting different features of edges and noises by NSCT. Furthermore, ICS strategy is introduced to optimize threshold parameter and amplify parameter adaptively. Numerical experiments on real SAR images show that there are improvements in both visual effects and objective indexes.展开更多
The precise detection and segmentation of tumor lesions are very important for lung cancer computer-aided diagnosis.However,in PET/CT(Positron Emission Tomography/Computed Tomography)lung images,the lesion shapes are ...The precise detection and segmentation of tumor lesions are very important for lung cancer computer-aided diagnosis.However,in PET/CT(Positron Emission Tomography/Computed Tomography)lung images,the lesion shapes are complex,the edges are blurred,and the sample numbers are unbalanced.To solve these problems,this paper proposes a Multi-branch Cross-scale Interactive Feature fusion Transformer model(MCIF-Transformer Mask RCNN)for PET/CT lung tumor instance segmentation,The main innovative works of this paper are as follows:Firstly,the ResNet-Transformer backbone network is used to extract global feature and local feature in lung images.The pixel dependence relationship is established in local and non-local fields to improve the model perception ability.Secondly,the Cross-scale Interactive Feature Enhancement auxiliary network is designed to provide the shallow features to the deep features,and the cross-scale interactive feature enhancement module(CIFEM)is used to enhance the attention ability of the fine-grained features.Thirdly,the Cross-scale Interactive Feature fusion FPN network(CIF-FPN)is constructed to realize bidirectional interactive fusion between deep features and shallow features,and the low-level features are enhanced in deep semantic features.Finally,4 ablation experiments,3 comparison experiments of detection,3 comparison experiments of segmentation and 6 comparison experiments with two-stage and single-stage instance segmentation networks are done on PET/CT lung medical image datasets.The results showed that APdet,APseg,ARdet and ARseg indexes are improved by 5.5%,5.15%,3.11%and 6.79%compared with Mask RCNN(resnet50).Based on the above research,the precise detection and segmentation of the lesion region are realized in this paper.This method has positive significance for the detection of lung tumors.展开更多
To extract features of fabric defects effectively and reduce dimension of feature space,a feature extraction method of fabric defects based on complex contourlet transform (CCT) and principal component analysis (PC...To extract features of fabric defects effectively and reduce dimension of feature space,a feature extraction method of fabric defects based on complex contourlet transform (CCT) and principal component analysis (PCA) is proposed.Firstly,training samples of fabric defect images are decomposed by CCT.Secondly,PCA is applied in the obtained low-frequency component and part of highfrequency components to get a lower dimensional feature space.Finally,components of testing samples obtained by CCT are projected onto the feature space where different types of fabric defects are distinguished by the minimum Euclidean distance method.A large number of experimental results show that,compared with PCA,the method combining wavdet low-frequency component with PCA (WLPCA),the method combining contourlet transform with PCA (CPCA),and the method combining wavelet low-frequency and highfrequency components with PCA (WPCA),the proposed method can extract features of common fabric defect types effectively.The recognition rate is greatly improved while the dimension is reduced.展开更多
An image fusion method combining complex contourlet transform(CCT) with nonnegative matrix factorization(NMF) is proposed in this paper.After two images are decomposed by CCT,NMF is applied to their highand low-freque...An image fusion method combining complex contourlet transform(CCT) with nonnegative matrix factorization(NMF) is proposed in this paper.After two images are decomposed by CCT,NMF is applied to their highand low-frequency components,respectively,and finally an image is synthesized.Subjective-visual-quality of the image fusion result is compared with those of the image fusion methods based on NMF and the combination of wavelet /contourlet /nonsubsampled contourlet with NMF.The experimental results are evaluated quantitatively,and the running time is also contrasted.It is shown that the proposed image fusion method can gain larger information entropy,standard deviation and mean gradient,which means that it can better integrate featured information from all source images,avoid background noise and promote space clearness in the fusion image effectively.展开更多
The segmentation of head and neck(H&N)tumors in dual Positron Emission Tomography/Computed Tomogra-phy(PET/CT)imaging is a critical task in medical imaging,providing essential information for diagnosis,treatment p...The segmentation of head and neck(H&N)tumors in dual Positron Emission Tomography/Computed Tomogra-phy(PET/CT)imaging is a critical task in medical imaging,providing essential information for diagnosis,treatment planning,and outcome prediction.Motivated by the need for more accurate and robust segmentation methods,this study addresses key research gaps in the application of deep learning techniques to multimodal medical images.Specifically,it investigates the limitations of existing 2D and 3D models in capturing complex tumor structures and proposes an innovative 2.5D UNet Transformer model as a solution.The primary research questions guiding this study are:(1)How can the integration of convolutional neural networks(CNNs)and transformer networks enhance segmentation accuracy in dual PET/CT imaging?(2)What are the comparative advantages of 2D,2.5D,and 3D model configurations in this context?To answer these questions,we aimed to develop and evaluate advanced deep-learning models that leverage the strengths of both CNNs and transformers.Our proposed methodology involved a comprehensive preprocessing pipeline,including normalization,contrast enhancement,and resampling,followed by segmentation using 2D,2.5D,and 3D UNet Transformer models.The models were trained and tested on three diverse datasets:HeckTor2022,AutoPET2023,and SegRap2023.Performance was assessed using metrics such as Dice Similarity Coefficient,Jaccard Index,Average Surface Distance(ASD),and Relative Absolute Volume Difference(RAVD).The findings demonstrate that the 2.5D UNet Transformer model consistently outperformed the 2D and 3D models across most metrics,achieving the highest Dice and Jaccard values,indicating superior segmentation accuracy.For instance,on the HeckTor2022 dataset,the 2.5D model achieved a Dice score of 81.777 and a Jaccard index of 0.705,surpassing other model configurations.The 3D model showed strong boundary delineation performance but exhibited variability across datasets,while the 2D model,although effective,generally underperformed compared to its 2.5D and 3D counterparts.Compared to related literature,our study confirms the advantages of incorporating additional spatial context,as seen in the improved performance of the 2.5D model.This research fills a significant gap by providing a detailed comparative analysis of different model dimensions and their impact on H&N segmentation accuracy in dual PET/CT imaging.展开更多
目的:将多尺度分析工具之一的Contourlet变换运用到锥形束CT(CBCT)图像去噪领域,并对Contourlet不同阈值去噪方法进行探讨。提出基于Contourlet变换结合半软阈值方法对锥形束CT去噪,并论证去噪效果。方法:利用Contourlet变换的多尺度多...目的:将多尺度分析工具之一的Contourlet变换运用到锥形束CT(CBCT)图像去噪领域,并对Contourlet不同阈值去噪方法进行探讨。提出基于Contourlet变换结合半软阈值方法对锥形束CT去噪,并论证去噪效果。方法:利用Contourlet变换的多尺度多方向性以及平移不变性,对低分辨率锥形束CT图像进行拉普拉斯塔形滤波和方向滤波多层分解后得到变换系数,随后对变换系数采用不同阈值方法进行处理,最后逆序反变换得到去噪后图像。通过软阈值和硬阈值方法在Contourlet变换中的应用,提出半软阈值结合Contourlet变换方法对锥形束CT图像去噪。通过对头,胸,盆腔各10例临床锥形束CT图像的去噪,比较三种阈值去噪效果。结果:半软阈值法在胸部和盆腔部锥形束CT图像去噪中比Contourlet硬阈值去噪在PSNR上平均高出1.40 d B和3.11 d B,但在头部锥形束CT图像处理中无优势,而Contourlet软阈值去噪后的锥形束CT图像在消除噪声的同时,信号自身的能量被消弱最多。结论:本文半软阈值法在一定程度上修正了硬,软阈值函数的缺陷,结合Contourlet变换在处理图像几何结构方面的优势,为锥形束CT图像去噪提供了一个新思路。展开更多
基金supported by Sichuan Science and Technology Program under Grant 2024NSFSC1984 and Grant 2024NSFSC1990。
文摘Currently, horizontal well fracturing is indispensable for shale gas development. Due to the variable reservoir formation morphology, the drilling trajectory often deviates from the high-quality reservoir,which increases the risk of fracturing. Accurately recognizing low-amplitude structures plays a crucial role in guiding horizontal wells. However, existing methods have low recognition accuracy, and are difficult to meet actual production demand. In order to improve the drilling encounter rate of high-quality reservoirs, we propose a method for fine recognition of low-amplitude structures based on the non-subsampled contourlet transform(NSCT). Firstly, the seismic structural data are analyzed at multiple scales and directions using the NSCT and decomposed into low-frequency and high-frequency structural components. Then, the signal of each component is reconstructed to eliminate the low-frequency background of the structure, highlight the structure and texture information, and recognize the low-amplitude structure from it. Finally, we combined the drilled horizontal wells to verify the low-amplitude structural recognition results. Taking a study area in the west Sichuan Basin block as an example, we demonstrate the fine identification of low-amplitude structures based on NSCT. By combining the variation characteristics of logging curves, such as organic carbon content(TOC), natural gamma value(GR), etc., the real structure type is verified and determined, and the false structures in the recognition results are checked. The proposed method can provide reliable information on low-amplitude structures for optimizing the trajectory of horizontal wells. Compared with identification methods based on traditional wavelet transform and curvelet transform, NSCT enhances the local features of low-amplitude structures and achieves finer mapping of low-amplitude structures, showing promise for application.
基金The National Key Technologies R&D Program during the 12th Five-Year Period of China(No.2012BAJ23B02)Science and Technology Support Program of Jiangsu Province(No.BE2010606)
文摘A novel algorithm for image edge detection is presented. This algorithm combines the nonsubsampled contourlet transform and the mathematical morphology. First, the source image is decomposed by the nonsubsampled contourlet transform into multi-scale and multi-directional subbands. Then the edges in the high-frequency and low-frequency sub-bands are respectively extracted by the dualthreshold modulus maxima method and the mathematical morphology operator. Finally, the edges from the high- frequency and low-frequency sub-bands are integrated to the edges of the source image, which are refined, and isolated points are excluded to achieve the edges of the source image. The simulation results show that the proposed algorithm can effectively suppress noise, eliminate pseudo-edges and overcome the adverse effects caused by uneven illumination to a certain extent. Compared with the traditional methods such as LoG, Sobel, and Carmy operators and the modulus maxima algorithm, the proposed method can maintain sufficient positioning accuracy and edge details, and it can also make an improvement in the completeness, smoothness and clearness of the outline.
基金supported by the National Natural Science Foundation of China (6117212711071002)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education (20113401110006)the Innovative Research Team of 211 Project in Anhui University (KJTD007A)
文摘A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low frequency image and several high frequency images, and the scale-invariant feature transform is employed to extract feature points from the low frequency im- age. A proximity matrix is constructed for the feature points of two related images. By singular value decomposition of the proximity matrix, a matching matrix (or matching result) reflecting the match- ing degree among feature points is obtained. Experimental results indicate that the proposed algorithm can reduce time complexity and possess a higher accuracy.
基金supported by National Natural Science Foundationof China (No. 60802061)Natural Science Research Item of the Education Department of Henan Province (No. 2008B510001)Innovation Scientists and Technicians Troop Construction Projects of Henan Province (No. 084100510012)
文摘A directional filter algorithm for intensity synthetic aperture radar (SAR) image based on nonsubsampled contourlet transform (NSCT) and immune clonal selection (ICS) is presented. The proposed filter mainly focuses on exploiting different features of edges and noises by NSCT. Furthermore, ICS strategy is introduced to optimize threshold parameter and amplify parameter adaptively. Numerical experiments on real SAR images show that there are improvements in both visual effects and objective indexes.
基金funded by National Natural Science Foundation of China No.62062003Ningxia Natural Science Foundation Project No.2023AAC03293.
文摘The precise detection and segmentation of tumor lesions are very important for lung cancer computer-aided diagnosis.However,in PET/CT(Positron Emission Tomography/Computed Tomography)lung images,the lesion shapes are complex,the edges are blurred,and the sample numbers are unbalanced.To solve these problems,this paper proposes a Multi-branch Cross-scale Interactive Feature fusion Transformer model(MCIF-Transformer Mask RCNN)for PET/CT lung tumor instance segmentation,The main innovative works of this paper are as follows:Firstly,the ResNet-Transformer backbone network is used to extract global feature and local feature in lung images.The pixel dependence relationship is established in local and non-local fields to improve the model perception ability.Secondly,the Cross-scale Interactive Feature Enhancement auxiliary network is designed to provide the shallow features to the deep features,and the cross-scale interactive feature enhancement module(CIFEM)is used to enhance the attention ability of the fine-grained features.Thirdly,the Cross-scale Interactive Feature fusion FPN network(CIF-FPN)is constructed to realize bidirectional interactive fusion between deep features and shallow features,and the low-level features are enhanced in deep semantic features.Finally,4 ablation experiments,3 comparison experiments of detection,3 comparison experiments of segmentation and 6 comparison experiments with two-stage and single-stage instance segmentation networks are done on PET/CT lung medical image datasets.The results showed that APdet,APseg,ARdet and ARseg indexes are improved by 5.5%,5.15%,3.11%and 6.79%compared with Mask RCNN(resnet50).Based on the above research,the precise detection and segmentation of the lesion region are realized in this paper.This method has positive significance for the detection of lung tumors.
基金National Natural Science Foundation of China(No.60872065)the Key Laboratory of Textile Science&Technology,Ministry of Education,China(No.P1111)+1 种基金the Key Laboratory of Advanced Textile Materials and Manufacturing Technology,Ministry of Education,China(No.2010001)the Priority Academic Program Development of Jiangsu Higher Education Institution,China
文摘To extract features of fabric defects effectively and reduce dimension of feature space,a feature extraction method of fabric defects based on complex contourlet transform (CCT) and principal component analysis (PCA) is proposed.Firstly,training samples of fabric defect images are decomposed by CCT.Secondly,PCA is applied in the obtained low-frequency component and part of highfrequency components to get a lower dimensional feature space.Finally,components of testing samples obtained by CCT are projected onto the feature space where different types of fabric defects are distinguished by the minimum Euclidean distance method.A large number of experimental results show that,compared with PCA,the method combining wavdet low-frequency component with PCA (WLPCA),the method combining contourlet transform with PCA (CPCA),and the method combining wavelet low-frequency and highfrequency components with PCA (WPCA),the proposed method can extract features of common fabric defect types effectively.The recognition rate is greatly improved while the dimension is reduced.
基金Supported by National Natural Science Foundation of China (No. 60872065)
文摘An image fusion method combining complex contourlet transform(CCT) with nonnegative matrix factorization(NMF) is proposed in this paper.After two images are decomposed by CCT,NMF is applied to their highand low-frequency components,respectively,and finally an image is synthesized.Subjective-visual-quality of the image fusion result is compared with those of the image fusion methods based on NMF and the combination of wavelet /contourlet /nonsubsampled contourlet with NMF.The experimental results are evaluated quantitatively,and the running time is also contrasted.It is shown that the proposed image fusion method can gain larger information entropy,standard deviation and mean gradient,which means that it can better integrate featured information from all source images,avoid background noise and promote space clearness in the fusion image effectively.
基金supported by Scientific Research Deanship at University of Ha’il,Saudi Arabia through project number RG-23137.
文摘The segmentation of head and neck(H&N)tumors in dual Positron Emission Tomography/Computed Tomogra-phy(PET/CT)imaging is a critical task in medical imaging,providing essential information for diagnosis,treatment planning,and outcome prediction.Motivated by the need for more accurate and robust segmentation methods,this study addresses key research gaps in the application of deep learning techniques to multimodal medical images.Specifically,it investigates the limitations of existing 2D and 3D models in capturing complex tumor structures and proposes an innovative 2.5D UNet Transformer model as a solution.The primary research questions guiding this study are:(1)How can the integration of convolutional neural networks(CNNs)and transformer networks enhance segmentation accuracy in dual PET/CT imaging?(2)What are the comparative advantages of 2D,2.5D,and 3D model configurations in this context?To answer these questions,we aimed to develop and evaluate advanced deep-learning models that leverage the strengths of both CNNs and transformers.Our proposed methodology involved a comprehensive preprocessing pipeline,including normalization,contrast enhancement,and resampling,followed by segmentation using 2D,2.5D,and 3D UNet Transformer models.The models were trained and tested on three diverse datasets:HeckTor2022,AutoPET2023,and SegRap2023.Performance was assessed using metrics such as Dice Similarity Coefficient,Jaccard Index,Average Surface Distance(ASD),and Relative Absolute Volume Difference(RAVD).The findings demonstrate that the 2.5D UNet Transformer model consistently outperformed the 2D and 3D models across most metrics,achieving the highest Dice and Jaccard values,indicating superior segmentation accuracy.For instance,on the HeckTor2022 dataset,the 2.5D model achieved a Dice score of 81.777 and a Jaccard index of 0.705,surpassing other model configurations.The 3D model showed strong boundary delineation performance but exhibited variability across datasets,while the 2D model,although effective,generally underperformed compared to its 2.5D and 3D counterparts.Compared to related literature,our study confirms the advantages of incorporating additional spatial context,as seen in the improved performance of the 2.5D model.This research fills a significant gap by providing a detailed comparative analysis of different model dimensions and their impact on H&N segmentation accuracy in dual PET/CT imaging.
文摘目的:将多尺度分析工具之一的Contourlet变换运用到锥形束CT(CBCT)图像去噪领域,并对Contourlet不同阈值去噪方法进行探讨。提出基于Contourlet变换结合半软阈值方法对锥形束CT去噪,并论证去噪效果。方法:利用Contourlet变换的多尺度多方向性以及平移不变性,对低分辨率锥形束CT图像进行拉普拉斯塔形滤波和方向滤波多层分解后得到变换系数,随后对变换系数采用不同阈值方法进行处理,最后逆序反变换得到去噪后图像。通过软阈值和硬阈值方法在Contourlet变换中的应用,提出半软阈值结合Contourlet变换方法对锥形束CT图像去噪。通过对头,胸,盆腔各10例临床锥形束CT图像的去噪,比较三种阈值去噪效果。结果:半软阈值法在胸部和盆腔部锥形束CT图像去噪中比Contourlet硬阈值去噪在PSNR上平均高出1.40 d B和3.11 d B,但在头部锥形束CT图像处理中无优势,而Contourlet软阈值去噪后的锥形束CT图像在消除噪声的同时,信号自身的能量被消弱最多。结论:本文半软阈值法在一定程度上修正了硬,软阈值函数的缺陷,结合Contourlet变换在处理图像几何结构方面的优势,为锥形束CT图像去噪提供了一个新思路。