Objective: To prospectively compare the discriminative capacity of dynamic contrast enhanced-magnetic resonance imaging(DCE-MRI) with that of^18F-fluorodeoxyglucose(^18F-FDG) positron emission tomography/computed...Objective: To prospectively compare the discriminative capacity of dynamic contrast enhanced-magnetic resonance imaging(DCE-MRI) with that of^18F-fluorodeoxyglucose(^18F-FDG) positron emission tomography/computed tomography(PET/CT) in the differentiation of malignant and benign solitary pulmonary nodules(SPNs).Methods: Forty-nine patients with SPNs were included in this prospective study. Thirty-two of the patients had malignant SPNs, while the other 17 had benign SPNs. All these patients underwent DCE-MRI and ^18F-FDG PET/CT examinations. The quantitative MRI pharmacokinetic parameters, including the trans-endothelial transfer constant(K^trans), redistribution rate constant(Kep), and fractional volume(Ve), were calculated using the Extended-Tofts Linear two-compartment model. The ^18F-FDG PET/CT parameter, maximum standardized uptake value(SUV(max)), was also measured. Spearman's correlations were calculated between the MRI pharmacokinetic parameters and the SUV(max) of each SPN. These parameters were statistically compared between the malignant and benign nodules. Receiver operating characteristic(ROC) analyses were used to compare the diagnostic capability between the DCE-MRI and ^18F-FDG PET/CT indexes.Results: Positive correlations were found between K^trans and SUV(max), and between K(ep) and SUV(max)(P〈0.05).There were significant differences between the malignant and benign nodules in terms of the K^trans, K(ep) and SUV(max) values(P〈0.05). The areas under the ROC curve(AUC) of K^trans) K(ep) and SUV(max) between the malignant and benign nodules were 0.909, 0.838 and 0.759, respectively. The sensitivity and specificity in differentiating malignant from benign SPNs were 90.6% and 82.4% for K^trans; 87.5% and 76.5% for K(ep); and 75.0% and 70.6%for SUV(max), respectively. The sensitivity and specificity of K^trans and K(ep) were higher than those of SUV(max), but there was no significant difference between them(P〉0.05).Conclusions: DCE-MRI can be used to differentiate between benign and malignant SPNs and has the advantage of being radiation free.展开更多
In the current study, we sought to evaluate the diagnostic efficacies of conventional ultrasound(US), contrastenhanced US(CEUS), combined US and CEUS and magnetic resonance imaging(MRI) in detecting focal solid ...In the current study, we sought to evaluate the diagnostic efficacies of conventional ultrasound(US), contrastenhanced US(CEUS), combined US and CEUS and magnetic resonance imaging(MRI) in detecting focal solid breast lesions. Totally 117 patients with 120 BI-RADS category 4A-5 breast lesions were evaluated by conventional US and CEUS, and MRI, respectively. SonoVue was used as contrast agent in CEUS and injected as an intravenous bolus; nodule scan was performed 4 minutes after bolus injection. A specific sonographic quantification software was used to obtain color-coded maps of perfusion parameters for the investigated lesion, namely the time-intensity curve.The pattern of contrast enhancement and related indexes regarding the time-intensity curve were used to describe the lesions, comparatively with pathological results. Histopathologic examination revealed 46 benign and 74 malignant lesions. Sensitivity, specificity, and accuracy of US in detecting malignant breast lesions were 90.14%, 95.92%, and 92.52%, respectively. Meanwhile, CE-MRI showed sensitivity, specificity, and accuracy of 88.73%, 95.92%, and91.67%, respectively. The area under the ROC curve for combined US and CEUS in discriminating benign from malignant breast lesions was 0.936, while that of MRI was 0.923, with no significant difference between them, as well as among groups. The time-intensity curve of malignant hypervascular fibroadenoma and papillary lesions mostly showed a fast-in/fast-out pattern, with no good correlation between them(kappa 〈0.20). In conclusion, the combined use of conventional US and CEUS displays good agreement with MRI in differentiating benign from malignant breast lesions.展开更多
Objective: To evaluate the feasibility of dynamic contrast-enhanced magnetic resonance imaging(DCEMRI) for predicting tumor response to radiotherapy in patients with suspected primary central nervous system(CNS) ...Objective: To evaluate the feasibility of dynamic contrast-enhanced magnetic resonance imaging(DCEMRI) for predicting tumor response to radiotherapy in patients with suspected primary central nervous system(CNS) germ cell tumors(GCTs).Methods: DCE-MRI parameters of 35 patients with suspected primary CNS GCTs were obtained prior to diagnostic radiation, using the Tofts and Kermode model. Radiosensitivity was determined in tumors diagnosed 2 weeks after radiation by observing changes in tumor size and markers as a response to MRI. Taking radiosensitivity as the gold standard, the cut-off value of DCE-MRI parameters was measured by receiver operating characteristic(ROC) curve. Diagnostic accuracy of DCE-MRI parameters for predicting radiosensitivity was evaluated by ROC curve.Results: A significant elevation in transfer constant(K^trans) and extravascular extracellular space(Ve)(P=0.000), as well as a significant reduction in rate constant(Kep)(P=0.000) was observed in tumors. K^trans, relative K^trans, and relative Kep of the responsive group were significantly higher than non-responsive groups. No significant difference was found in Kep, Ve, and relative Ve between the two groups. Relative K^trans showed the best diagnostic value in predicting radiosensitivity with a sensitivity of 100%, specificity of 91.7%, positive predictive value(PPV) of 95.8%, and negative predictive value(NPV) of 100%.Conclusions: Relative K^trans appeared promising in predicting tumor response to radiation therapy(RT). It is implied that DCE-MRI pre-treatment is a requisite step in diagnostic procedures and a novel and reliable approach to guide clinical choice of RT.展开更多
基金supported by the Jiangsu Province Natural Science Foundation (No. BK20161291)the Nantong Science Foundation of China (No. MS2201507)the Nantong Municipal Commission of Health and Family Planning Young Fund (No. WQ2014047)
文摘Objective: To prospectively compare the discriminative capacity of dynamic contrast enhanced-magnetic resonance imaging(DCE-MRI) with that of^18F-fluorodeoxyglucose(^18F-FDG) positron emission tomography/computed tomography(PET/CT) in the differentiation of malignant and benign solitary pulmonary nodules(SPNs).Methods: Forty-nine patients with SPNs were included in this prospective study. Thirty-two of the patients had malignant SPNs, while the other 17 had benign SPNs. All these patients underwent DCE-MRI and ^18F-FDG PET/CT examinations. The quantitative MRI pharmacokinetic parameters, including the trans-endothelial transfer constant(K^trans), redistribution rate constant(Kep), and fractional volume(Ve), were calculated using the Extended-Tofts Linear two-compartment model. The ^18F-FDG PET/CT parameter, maximum standardized uptake value(SUV(max)), was also measured. Spearman's correlations were calculated between the MRI pharmacokinetic parameters and the SUV(max) of each SPN. These parameters were statistically compared between the malignant and benign nodules. Receiver operating characteristic(ROC) analyses were used to compare the diagnostic capability between the DCE-MRI and ^18F-FDG PET/CT indexes.Results: Positive correlations were found between K^trans and SUV(max), and between K(ep) and SUV(max)(P〈0.05).There were significant differences between the malignant and benign nodules in terms of the K^trans, K(ep) and SUV(max) values(P〈0.05). The areas under the ROC curve(AUC) of K^trans) K(ep) and SUV(max) between the malignant and benign nodules were 0.909, 0.838 and 0.759, respectively. The sensitivity and specificity in differentiating malignant from benign SPNs were 90.6% and 82.4% for K^trans; 87.5% and 76.5% for K(ep); and 75.0% and 70.6%for SUV(max), respectively. The sensitivity and specificity of K^trans and K(ep) were higher than those of SUV(max), but there was no significant difference between them(P〉0.05).Conclusions: DCE-MRI can be used to differentiate between benign and malignant SPNs and has the advantage of being radiation free.
基金supported by the Natural Science Foundation of Jiangsu University(14KJB320003)
文摘In the current study, we sought to evaluate the diagnostic efficacies of conventional ultrasound(US), contrastenhanced US(CEUS), combined US and CEUS and magnetic resonance imaging(MRI) in detecting focal solid breast lesions. Totally 117 patients with 120 BI-RADS category 4A-5 breast lesions were evaluated by conventional US and CEUS, and MRI, respectively. SonoVue was used as contrast agent in CEUS and injected as an intravenous bolus; nodule scan was performed 4 minutes after bolus injection. A specific sonographic quantification software was used to obtain color-coded maps of perfusion parameters for the investigated lesion, namely the time-intensity curve.The pattern of contrast enhancement and related indexes regarding the time-intensity curve were used to describe the lesions, comparatively with pathological results. Histopathologic examination revealed 46 benign and 74 malignant lesions. Sensitivity, specificity, and accuracy of US in detecting malignant breast lesions were 90.14%, 95.92%, and 92.52%, respectively. Meanwhile, CE-MRI showed sensitivity, specificity, and accuracy of 88.73%, 95.92%, and91.67%, respectively. The area under the ROC curve for combined US and CEUS in discriminating benign from malignant breast lesions was 0.936, while that of MRI was 0.923, with no significant difference between them, as well as among groups. The time-intensity curve of malignant hypervascular fibroadenoma and papillary lesions mostly showed a fast-in/fast-out pattern, with no good correlation between them(kappa 〈0.20). In conclusion, the combined use of conventional US and CEUS displays good agreement with MRI in differentiating benign from malignant breast lesions.
基金supported by Beijing Natural Science Foundation(No.7122029)
文摘Objective: To evaluate the feasibility of dynamic contrast-enhanced magnetic resonance imaging(DCEMRI) for predicting tumor response to radiotherapy in patients with suspected primary central nervous system(CNS) germ cell tumors(GCTs).Methods: DCE-MRI parameters of 35 patients with suspected primary CNS GCTs were obtained prior to diagnostic radiation, using the Tofts and Kermode model. Radiosensitivity was determined in tumors diagnosed 2 weeks after radiation by observing changes in tumor size and markers as a response to MRI. Taking radiosensitivity as the gold standard, the cut-off value of DCE-MRI parameters was measured by receiver operating characteristic(ROC) curve. Diagnostic accuracy of DCE-MRI parameters for predicting radiosensitivity was evaluated by ROC curve.Results: A significant elevation in transfer constant(K^trans) and extravascular extracellular space(Ve)(P=0.000), as well as a significant reduction in rate constant(Kep)(P=0.000) was observed in tumors. K^trans, relative K^trans, and relative Kep of the responsive group were significantly higher than non-responsive groups. No significant difference was found in Kep, Ve, and relative Ve between the two groups. Relative K^trans showed the best diagnostic value in predicting radiosensitivity with a sensitivity of 100%, specificity of 91.7%, positive predictive value(PPV) of 95.8%, and negative predictive value(NPV) of 100%.Conclusions: Relative K^trans appeared promising in predicting tumor response to radiation therapy(RT). It is implied that DCE-MRI pre-treatment is a requisite step in diagnostic procedures and a novel and reliable approach to guide clinical choice of RT.