Seepage flow through soils,rocks and geotechnical structures has a great influence on their stabilities and performances,and seepage control is a critical technological issue in engineering practices.The physical mech...Seepage flow through soils,rocks and geotechnical structures has a great influence on their stabilities and performances,and seepage control is a critical technological issue in engineering practices.The physical mechanisms associated with various engineering measures for seepage control are investigated from a new perspective within the framework of continuum mechanics;and an equation-based classification of seepage control mechanisms is proposed according to their roles in the mathematical models for seepage flow,including control mechanisms by coupled processes,initial states,boundary conditions and hydraulic properties.The effects of each mechanism on seepage control are illustrated with examples in hydroelectric engineering and radioactive waste disposal,and hence the reasonability of classification is demonstrated.Advice on performance assessment and optimization design of the seepage control systems in geotechnical engineering is provided,and the suggested procedure would serve as a useful guidance for cost-effective control of seepage flow in various engineering practices.展开更多
According to dimensionless analysis of the coalbed methane (CBM) production data of Fanzhuang block in southern Qinshui basin, the dimensionless gas production rate is calculated to quantitatively divide the CBM wel...According to dimensionless analysis of the coalbed methane (CBM) production data of Fanzhuang block in southern Qinshui basin, the dimensionless gas production rate is calculated to quantitatively divide the CBM well production process into four stages, i.e., drai- nage stage, unstable gas production stage, stable gas pro- duction stage, and gas production decline stage. By the material balance method, the coal reservoir permeability change in different stages is quantitatively characterized. The characteristics and control mechanisms of change in coalbed permeability (CICP) during different production stages are concluded on five aspects, i.e., permeability trend variation, controlling mechanism, system energy, phase state compositions, and production performance. The study reveals that CICP is characterized by first decline, then recovery, and finally by increase and is controlled directly by effective stress and matrix shrinkage effects. Further, the duration and intensity of the matrix shrinkage effect are inherently controlled by adsorption and desorp- tion features.展开更多
An analytical study was presented on active control of sound transmission into a vibro-acoustic enclosure comprising two flexible plates. Two types of actuators were used, i.e. acoustic actuator and distributed lead z...An analytical study was presented on active control of sound transmission into a vibro-acoustic enclosure comprising two flexible plates. Two types of actuators were used, i.e. acoustic actuator and distributed lead zirconate titanate piezoelectric (PZT) actuator instead of point force actuator. Using the modal acoustic transfer impedance-mobility matrices, the excitation and interaction in the coupled sound transmission system can be described with clear physical significance. With the control system designed to globally reduce the sound field, different control system configurations were considered, including the structural actuator on the incident plate, actuator on the receiving plate, acoustic actuator on the cavity, and their combinations. The effectiveness and performance of the control strategy corresponding to each system configuration were compared and discussed. The role and control mechanism of each type of actuator were of particular interest. It was shown that the incident plate actuator is effective in controlling the cavity-dominated modes and the structural modes dominated by the incident plate and receiving plate. Two main control mechanisms are involved in this control configuration, i.e., modal suppressing and modal rearrangement. For control system configuration with only acoustic actuator in the enclosure, the mechanism involved in this arrangement is purely modal suppression. Desirable placements of structural actuators in terms of total potential energy reduction were also discussed.展开更多
The differential equations of motion of a comtlaint system with parameters and variable mass, of a system with variable mass and servo constraints and those for the control problem on the forced motion of constraint s...The differential equations of motion of a comtlaint system with parameters and variable mass, of a system with variable mass and servo constraints and those for the control problem on the forced motion of constraint systems with variable mass are given respectively. Finally, an example is presented.展开更多
The active control of structural sound radiation in an acoustic enclosure is studied by using distributed point force actuators as the secondary control force, and the control mechanisms for the radiated noise in the ...The active control of structural sound radiation in an acoustic enclosure is studied by using distributed point force actuators as the secondary control force, and the control mechanisms for the radiated noise in the cavity are analyzed. A rectangular enclosure involving two simply supported flexible plates is created for this investigation. The characteristics of the primary and secondary sound field and the structural-acoustic coupled system are analyzed, and the optimal control objective for reducing the sound pressure level (SPL) in the cavity is derived. The response of the SPL in the cavity is analyzed and compared when the secondary point force actuators with different locations and parameters are applied to the two flexible plates. The results indicate that the noise in the cavity can be better controlled when some point force actuators are applied to two flexible plates for cooperative control rather than the point force actuators being only applied to the excited flexible plate.展开更多
In view of the problems found in the in-depth interviews of the current situation of rural non-point source pollution control mechanism in Nantong City and their reasons,the following six countermeasures and suggestio...In view of the problems found in the in-depth interviews of the current situation of rural non-point source pollution control mechanism in Nantong City and their reasons,the following six countermeasures and suggestions are put forward,including giving full play to the role of fighting bastion of the Party branch and building a mechanism for Party building to lead the control of non-point source pollution in rural areas,giving prominence to the dominant role of farmers and establishing farmers’endogenous motivation excitation mechanism for rural non-point source pollution control,improving the interest coordination mechanism among multiple governance subjects and building a modern control system for rural non-point source pollution,combining regulations,administrative,economic,technical and other means of rural non-point source pollution control and strengthening the synergistic integration mechanism of multiple means of control,reconstructing the information disclosure mechanism of rural non-point source pollution control and building a comprehensive trust mechanism of multiple control subjects,and improving the mechanism for coordinating the supply of policy tools and ensure that basic mechanisms play their due role.展开更多
The deformation of soft rock roadway caused by floor heave is a major challenge for coal mines in China western mining areas. To achieve security and stability of soft rock roadway, this work considered the headgate a...The deformation of soft rock roadway caused by floor heave is a major challenge for coal mines in China western mining areas. To achieve security and stability of soft rock roadway, this work considered the headgate at panel 11505 of the Yushujing Coal Mine as background. First, based on the limit equilibrium method and slip line field theory,a model of floor heave was established, the mechanism of floor heave control was analyzed, and an optimized support method was proposed. Then, the displacement, stress and failure zones around the surrounding rock with the original and optimized support were studied by FLAC. Finally, the serviceability of the support method was verified by field application. The results showed that the main deformation form of soft rock roadway is floor heave, and 0.5 m is relatively reasonable thicknesses of the inverted arch. The extrusion failure zone and shear failure zone were mainly affected by tensile and shear failure, respectively. The modification of floor and the effective support are key points. The failure zone was consistent between numerical simulation and theoretical calculation. The maximum convergences of floor heave determined by numerical simulation and field measurement were 220 mm and 240 mm, respectively, which were reduced by 55% and 60% compared with the original support, and the convergence between sidewalls decreased considerably. The optimized support method controls the floor heave well.展开更多
Desertification is one of the most serious environmental problems in the world,especially in the arid desert regions.Combating desertification,therefore,is an urgent task on a regional or even global scale.The Taklima...Desertification is one of the most serious environmental problems in the world,especially in the arid desert regions.Combating desertification,therefore,is an urgent task on a regional or even global scale.The Taklimakan Desert in China is the second largest mobile desert in the world and has been called the''Dead Sea''due to few organisms can exist in such a harsh environment.The Taklimakan Desert Highway,the longest desert highway(a total length of 446 km)across the mobile desert in the world,was built in the 1990s within the Taklimakan Desert.It has an important strategic significance regarding oil and gas resources exploration and plays a vital role in the socio-economic development of southern Xinjiang,China.However,wind-blow sand seriously damages the smoothness of the desert highway and,in this case,mechanical sand control system(including sand barrier fences and straw checkerboards)was used early in the life of the desert highway to protect the road.Unfortunately,more than 70%of the sand barrier fences and straw checkerboards have lost their functions,and the desert highway has often been buried and frequently blocked since 1999.To solve this problem,a long artificial shelterbelt with the length of 437 km was built along the desert highway since 2000.However,some potential problems still exist for the sustainable development of the desert highway,such as water shortage,strong sandstorms,extreme environmental characteristics and large maintenance costs.The study aims to provide an overview of the damages caused by wind-blown sand and the effects of sand control measures along the Taklimakan Desert Highway.Ultimately,we provide some suggestions for the biological sand control system to ensure the sustainable development of the Taklimakan Desert Highway,such as screening drought-resistant species to reduce the irrigation requirement and ensure the sound development of groundwater,screening halophytes to restore vegetation in the case of soil salinization,and planting cash crops,such as Cistanche,Wolfberry,Apocynum and other cash crops to decrease the high cost of maintenance on highways and shelterbelts.展开更多
Two types of Mei adiabatic invariants induced by perturbation of Mei symmetry for nonholonomic controllablemechanical systems are reported.Criterion and restriction equations determining Mei symmetry after beingdistur...Two types of Mei adiabatic invariants induced by perturbation of Mei symmetry for nonholonomic controllablemechanical systems are reported.Criterion and restriction equations determining Mei symmetry after beingdisturbed of the system are established.Form and existence condition of Mei adiabatic invariants are obtained.展开更多
The Mei symmetries and the Lie symmetries for nonholonomic controllable mechanical systems with relativistic rotational variable mass are studied. The differential equations of motion of the systems are established. ...The Mei symmetries and the Lie symmetries for nonholonomic controllable mechanical systems with relativistic rotational variable mass are studied. The differential equations of motion of the systems are established. The definition and criterion of the Mei symmetries and the Lie symmetries of the system are studied respectively. The necessary and sufficient condition under which the Mei symmetry is Lie symmetry is given. The condition under which the Mei symmetries can be led to a new kind of conserved quantity and the form of the conserved quantity are obtained. An example is given to illustrate the application of the results.展开更多
This paper studies the perturbation to symmetries and adiabatic invariant for nonholonomic controllable mechanical systems with non-Chetaev type constraints. It gives the exact invariants introduced by the Lie symmetr...This paper studies the perturbation to symmetries and adiabatic invariant for nonholonomic controllable mechanical systems with non-Chetaev type constraints. It gives the exact invariants introduced by the Lie symmetries of the nonholonomic controllable mechanical system with non-Chetaev type constraints without perturbation. Based on the definition of high-order adiabatic invarlants of mechanical system, the perturbation of Lie symmetries for nonholonomic controllable mechanical system with non-Chetaev type constraints with the action of small disturbances is investigated, and a new type of adiabatic invariant of system are obtained. In the end of this paper, an example is given to illustrate the application of the results.展开更多
The control mechanism of mechanical bone remodeling at cellular level was investigated by means of an extensive parametric study on a theoretical model described in this paper. From a perspective of control mechanism,...The control mechanism of mechanical bone remodeling at cellular level was investigated by means of an extensive parametric study on a theoretical model described in this paper. From a perspective of control mechanism, it was found that there are several control mechanisms working simultaneously in bone remodeling which is a complex process. Typically, an extensive parametric study was carried out for investigating model parameter space related to cell differentiation and apoptosis which can describe the fundamental cell lineage behaviors. After analyzing all the combinations of 728 permutations in six model parameters, we have identified a small number of parameter combinations that can lead to physiologically realistic responses which are similar to theoretically idealized physiological responses. The results presented in the work enhanced our understanding on mechanical bone remodeling and the identified control mechanisms can help researchers to develop combined pharmacological-mechanical therapies to treat bone loss diseases such as osteoporosis.展开更多
A new approach named as steel pile method is innovatively proposed in this study to control severe floor heaves in gob-side entry retaining. It is required that the steel piles be installed in the floor corners with a...A new approach named as steel pile method is innovatively proposed in this study to control severe floor heaves in gob-side entry retaining. It is required that the steel piles be installed in the floor corners with a certain interval before the influence of the dynamic pressure induced by current panel extraction. Using numerical simulation and theoretical analysis, this study investigated the interaction between the steel piles and the floor rocks during the service life of the steel piles, and revealed the mechanism of the steel piles in controlling floor heaves. The effect of the steel pile parameters on the control of floor heaves was presented and elaborated. It is found that the effectiveness of the steel piles in controlling floor heaves can be enhanced with greater installed dip angle, longer length and smaller interval of the steel piles.Compared with traditional methods, e.g., using floor anchor bolts and floor restoration, the advantages using steel pile were successfully defined in terms of controlling effect and economic benefits. It is hoped that the proposed method can contribute to the development of gob-side entry retaining technique.展开更多
In order to avoid the deep-well oil shale roadway being deformed, damaged, or difficult to maintain after excavating and supporting in Haishiwan coal mine, this paper has analyzed the characteristics of the deformed r...In order to avoid the deep-well oil shale roadway being deformed, damaged, or difficult to maintain after excavating and supporting in Haishiwan coal mine, this paper has analyzed the characteristics of the deformed roadway and revealed its failure mechanism by taking comprehensively the methods of field geological investigation, displacement monitoring of surrounding rock, rock properties and hydration properties experiments and field application tests. Based on this work, the high-resistance controlled yielding supporting principle is proposed, which is: to "resist" by high pre-tightening force and high stiff- ness in the early stage, to "yield" by making use of the controlled deformation of a yielding tube in the middle stage, and to "fix" by applying total-section Gunite in the later stage. A high-resistance controlled yielding supporting technique of "high pre-tightening force yielding anchor bolt + small-bore pre-tight- ening force anchor cable + rebar ladder beam + rhombic metal mesh + lagging gunite" has been estab- lished, and industrial on site testing implemented. The practical results show that the high-resistance controlled yielding supporting technique can effectively control the large deformation and long-time rheology of deep-well oil shale roadways and can provide beneficial references for the maintenance of other con-generic roadways.Deep-well Oil shale展开更多
Lung diseases associated with alveoli,such as acute respiratory distress syndrome,have posed a long-term threat to human health.However,an in vitro model capable of simulating different deformations of the alveoli and...Lung diseases associated with alveoli,such as acute respiratory distress syndrome,have posed a long-term threat to human health.However,an in vitro model capable of simulating different deformations of the alveoli and a suitable material for mimicking basement membrane are currently lacking.Here,we present an innovative biomimetic controllable strain membrane(BCSM)at an air–liquid interface(ALI)to reconstruct alveolar respiration.The BCSM consists of a high-precision three-dimensional printing melt-electrowritten polycaprolactone(PCL)mesh,coated with a hydrogel substrate—to simulate the important functions(such as stiffness,porosity,wettability,and ALI)of alveolar microenvironments,and seeded pulmonary epithelial cells and vascular endothelial cells on either side,respectively.Inspired by papercutting,the BCSM was fabricated in the plane while it operated in three dimensions.A series of the topological structure of the BCSM was designed to control various local-area strain,mimicking alveolar varied deformation.Lopinavir/ritonavir could reduce Lamin A expression under over-stretch condition,which might be effective in preventing ventilator-induced lung injury.The biomimetic lung-unit model with BCSM has broader application prospects in alveoli-related research in the future,such as in drug toxicology and metabolism.展开更多
Aiming at soft rock ground support issues under conditions of high stress and long-term water immersion, the ground failure mechanism is revealed by taking the deep-water sumps of Jiulong Mine as the engineering backg...Aiming at soft rock ground support issues under conditions of high stress and long-term water immersion, the ground failure mechanism is revealed by taking the deep-water sumps of Jiulong Mine as the engineering background and employing field investigation, tests of rock structure, mechanical properties and mineral composition. The main factors leading to the surrounding rock failure include the high and complex stress state of the water sumps, high-clay content and water-weakened rock, and the unreasonable support design. In this paper, the broken and fractured rock mass near roadway opening is considered as ground small-structure, and deep stable rock mass as ground large-structure. A support technology focusing on cutting off the water, strengthening the small structure of the rock and transferring the large structure of the rock is proposed. The proposed support technology of interconnecting the large and small structures, based on high-strength bolts, high-stiffness shotcrete layer plugging water,strengthening the small structure with deep-hole grouting and shallow-hole grouting, highpretensioned cables tensioned twice to make the large and small structures bearing the pressure evenly,channel-steel and high-pretensioned cables are used to control floor heave. The numerical simulation and field test show that this support system can control the rock deformation of the water sumps and provide technical support to similar roadway support designs.展开更多
In view of the buckling failure caused by large deformation of Mesozoic soft rock roadway in Shajihai mining area, such as serious roof fall, rib spalling, floor heave, etc., based on the detail site investigation,the...In view of the buckling failure caused by large deformation of Mesozoic soft rock roadway in Shajihai mining area, such as serious roof fall, rib spalling, floor heave, etc., based on the detail site investigation,theoretical analysis, mineral composition test, microstructure test, water-physical property test and field experiments were carried out. And we revealed the compound failure mechanism of Mesozoic soft rock roadway in Shajihai mining area, namely the molecule expansion-shear slip of weak structural plane-construction disturbance. On this basis, the coupling support technology whose core is constant resistance with large deformation bolt was proposed. The feature of this supporting technology is that a new type of structural composite material was used, which makes the supporting system not only has the ideal deformation characteristics, but also has high supporting resistance. Thus the fully release of plastic energy within surrounding rock and reasonable control of the thickness of the plastic ring were realized. Then the differential deformation between the surrounding rock and support was eliminated by the secondary coupling support of bolt–mesh–cable, and the bolt with high strength was applied in the base angle to control floor. Eventually the collaborative bearing system of surrounding rock–support was formed. Through field tests the validity and rationality of support was also verified.展开更多
The ore-controlling mechanism of the bedding fault system in the massive sulfide deposits of the Wushancopper orefield may be generalized as the control of ore deposition by optimum surface in an ore-formingstructural...The ore-controlling mechanism of the bedding fault system in the massive sulfide deposits of the Wushancopper orefield may be generalized as the control of ore deposition by optimum surface in an ore-formingstructural trap. The mechanism has three major features: (1) timing of mineralization; (2) positioning of hostformation; and (3) dependence of ore-controlling structure on properties of rocks. The 'optimum surface' is adivisional structural plane which marks obvious difference in physical, chemical and mechanical properties andis favorable for mineralization. It is also a unity of structures. lithofacies and orebodies. The structural and geochemical characteristics of the ore deposits indicate the migration trend of the ma-jor characteristic clements in the ore-controlling fault belt: elements with a small radius (Si, Fe, Mg and Al)moved towards and concentrated at the center of the belt while large-radius ones (Ca, K and Na) were remotefrom the center.展开更多
In this paper,we study the Noether-form invariance of nonholonomic mechanical controllable systems inphase space.Equations of motion of the controllable mechanical systems in phase space are presented.The definitionan...In this paper,we study the Noether-form invariance of nonholonomic mechanical controllable systems inphase space.Equations of motion of the controllable mechanical systems in phase space are presented.The definitionand the criterion for this system are presented.A new conserved quantity and the Noether conserved quantity deducedfrom the Noether-form invariance are obtained.An example is given to illustrate the application of the results.展开更多
基金Supported by the National Natural Science Foundation of China(51079107,50839004)the Program for New Century Excellent Talents in University(NCET-09-0610)
文摘Seepage flow through soils,rocks and geotechnical structures has a great influence on their stabilities and performances,and seepage control is a critical technological issue in engineering practices.The physical mechanisms associated with various engineering measures for seepage control are investigated from a new perspective within the framework of continuum mechanics;and an equation-based classification of seepage control mechanisms is proposed according to their roles in the mathematical models for seepage flow,including control mechanisms by coupled processes,initial states,boundary conditions and hydraulic properties.The effects of each mechanism on seepage control are illustrated with examples in hydroelectric engineering and radioactive waste disposal,and hence the reasonability of classification is demonstrated.Advice on performance assessment and optimization design of the seepage control systems in geotechnical engineering is provided,and the suggested procedure would serve as a useful guidance for cost-effective control of seepage flow in various engineering practices.
基金financial support from the various funding agencies including the Major State Basic Research Development Program of China (973 Program, 2009CB219604)the National Natural Science Foundation of China (41272175)+1 种基金the Key Project of the National Science & Technology (2011ZX05034-001)the China Scholarship Council
文摘According to dimensionless analysis of the coalbed methane (CBM) production data of Fanzhuang block in southern Qinshui basin, the dimensionless gas production rate is calculated to quantitatively divide the CBM well production process into four stages, i.e., drai- nage stage, unstable gas production stage, stable gas pro- duction stage, and gas production decline stage. By the material balance method, the coal reservoir permeability change in different stages is quantitatively characterized. The characteristics and control mechanisms of change in coalbed permeability (CICP) during different production stages are concluded on five aspects, i.e., permeability trend variation, controlling mechanism, system energy, phase state compositions, and production performance. The study reveals that CICP is characterized by first decline, then recovery, and finally by increase and is controlled directly by effective stress and matrix shrinkage effects. Further, the duration and intensity of the matrix shrinkage effect are inherently controlled by adsorption and desorp- tion features.
基金Supported by the National Natural Science Foundation of China (No.10802024)Research Fund for the Doctoral Program of Higher Education of China (No. 200802171009)+1 种基金Innovative Talents Fund of Harbin (No.2009RFQXG211)Fundamental Research Fund of HEU (No. HEUFT08003)
文摘An analytical study was presented on active control of sound transmission into a vibro-acoustic enclosure comprising two flexible plates. Two types of actuators were used, i.e. acoustic actuator and distributed lead zirconate titanate piezoelectric (PZT) actuator instead of point force actuator. Using the modal acoustic transfer impedance-mobility matrices, the excitation and interaction in the coupled sound transmission system can be described with clear physical significance. With the control system designed to globally reduce the sound field, different control system configurations were considered, including the structural actuator on the incident plate, actuator on the receiving plate, acoustic actuator on the cavity, and their combinations. The effectiveness and performance of the control strategy corresponding to each system configuration were compared and discussed. The role and control mechanism of each type of actuator were of particular interest. It was shown that the incident plate actuator is effective in controlling the cavity-dominated modes and the structural modes dominated by the incident plate and receiving plate. Two main control mechanisms are involved in this control configuration, i.e., modal suppressing and modal rearrangement. For control system configuration with only acoustic actuator in the enclosure, the mechanism involved in this arrangement is purely modal suppression. Desirable placements of structural actuators in terms of total potential energy reduction were also discussed.
文摘The differential equations of motion of a comtlaint system with parameters and variable mass, of a system with variable mass and servo constraints and those for the control problem on the forced motion of constraint systems with variable mass are given respectively. Finally, an example is presented.
基金The National Natural Science Foundation of China(No.50975047)
文摘The active control of structural sound radiation in an acoustic enclosure is studied by using distributed point force actuators as the secondary control force, and the control mechanisms for the radiated noise in the cavity are analyzed. A rectangular enclosure involving two simply supported flexible plates is created for this investigation. The characteristics of the primary and secondary sound field and the structural-acoustic coupled system are analyzed, and the optimal control objective for reducing the sound pressure level (SPL) in the cavity is derived. The response of the SPL in the cavity is analyzed and compared when the secondary point force actuators with different locations and parameters are applied to the two flexible plates. The results indicate that the noise in the cavity can be better controlled when some point force actuators are applied to two flexible plates for cooperative control rather than the point force actuators being only applied to the excited flexible plate.
基金Supported by the Project for Philosophy and Social Science Research of Colleges and Universities in Jiangsu(2019SJA1539)Excellent Teaching Team of"Qinglan Project"of Colleges and Universities in Jiangsu(Sujiaoshihan[2020]No.10)+4 种基金Innovation and Entrepreneurship Training Planning Project for University Students in Jiangsu Province(202112684014Y)Construction Project of High-level Professional Group of Environmental Engineering Technology in Higher Vocational Education of Jiangsu Province(Sujiaozhihan[2020]No.31)Construction Project of Industry-Education Integration Platform in Jiangsu Province"Industry-Education Integration Platform of Ecological Environmental Protection and Control"(Sujiaozhihan[2019]No.26)Jiangsu Province Engineering Research Center of Agricultural and Rural Pollution Prevention Technology and Equipment(Sufagaigaojifa[2022]No.1103)School Talent Team Project(Tongkexiao[2021]No.10)。
文摘In view of the problems found in the in-depth interviews of the current situation of rural non-point source pollution control mechanism in Nantong City and their reasons,the following six countermeasures and suggestions are put forward,including giving full play to the role of fighting bastion of the Party branch and building a mechanism for Party building to lead the control of non-point source pollution in rural areas,giving prominence to the dominant role of farmers and establishing farmers’endogenous motivation excitation mechanism for rural non-point source pollution control,improving the interest coordination mechanism among multiple governance subjects and building a modern control system for rural non-point source pollution,combining regulations,administrative,economic,technical and other means of rural non-point source pollution control and strengthening the synergistic integration mechanism of multiple means of control,reconstructing the information disclosure mechanism of rural non-point source pollution control and building a comprehensive trust mechanism of multiple control subjects,and improving the mechanism for coordinating the supply of policy tools and ensure that basic mechanisms play their due role.
基金Project(51974174) supported by the National Natural Science Foundation of ChinaProject(ZR2019YQ26) supported by the Natural Science Foundation of Shandong Province (Excellent Youth Fund),China。
文摘The deformation of soft rock roadway caused by floor heave is a major challenge for coal mines in China western mining areas. To achieve security and stability of soft rock roadway, this work considered the headgate at panel 11505 of the Yushujing Coal Mine as background. First, based on the limit equilibrium method and slip line field theory,a model of floor heave was established, the mechanism of floor heave control was analyzed, and an optimized support method was proposed. Then, the displacement, stress and failure zones around the surrounding rock with the original and optimized support were studied by FLAC. Finally, the serviceability of the support method was verified by field application. The results showed that the main deformation form of soft rock roadway is floor heave, and 0.5 m is relatively reasonable thicknesses of the inverted arch. The extrusion failure zone and shear failure zone were mainly affected by tensile and shear failure, respectively. The modification of floor and the effective support are key points. The failure zone was consistent between numerical simulation and theoretical calculation. The maximum convergences of floor heave determined by numerical simulation and field measurement were 220 mm and 240 mm, respectively, which were reduced by 55% and 60% compared with the original support, and the convergence between sidewalls decreased considerably. The optimized support method controls the floor heave well.
基金This work was supported by the National Natural Science Foundation of China(31971731,41771121)the Xinjiang National Key Research and Development Program(2019B00005)+1 种基金the National Key Research and Development Program(2017YFC0506705)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2017476).
文摘Desertification is one of the most serious environmental problems in the world,especially in the arid desert regions.Combating desertification,therefore,is an urgent task on a regional or even global scale.The Taklimakan Desert in China is the second largest mobile desert in the world and has been called the''Dead Sea''due to few organisms can exist in such a harsh environment.The Taklimakan Desert Highway,the longest desert highway(a total length of 446 km)across the mobile desert in the world,was built in the 1990s within the Taklimakan Desert.It has an important strategic significance regarding oil and gas resources exploration and plays a vital role in the socio-economic development of southern Xinjiang,China.However,wind-blow sand seriously damages the smoothness of the desert highway and,in this case,mechanical sand control system(including sand barrier fences and straw checkerboards)was used early in the life of the desert highway to protect the road.Unfortunately,more than 70%of the sand barrier fences and straw checkerboards have lost their functions,and the desert highway has often been buried and frequently blocked since 1999.To solve this problem,a long artificial shelterbelt with the length of 437 km was built along the desert highway since 2000.However,some potential problems still exist for the sustainable development of the desert highway,such as water shortage,strong sandstorms,extreme environmental characteristics and large maintenance costs.The study aims to provide an overview of the damages caused by wind-blown sand and the effects of sand control measures along the Taklimakan Desert Highway.Ultimately,we provide some suggestions for the biological sand control system to ensure the sustainable development of the Taklimakan Desert Highway,such as screening drought-resistant species to reduce the irrigation requirement and ensure the sound development of groundwater,screening halophytes to restore vegetation in the case of soil salinization,and planting cash crops,such as Cistanche,Wolfberry,Apocynum and other cash crops to decrease the high cost of maintenance on highways and shelterbelts.
基金Supported by the Natural Science Foundation of Shandong Province under Grant No.ZR2009AQ011 Science Foundation of Binzhou University under Grant No.BZXYG0903
文摘Two types of Mei adiabatic invariants induced by perturbation of Mei symmetry for nonholonomic controllablemechanical systems are reported.Criterion and restriction equations determining Mei symmetry after beingdisturbed of the system are established.Form and existence condition of Mei adiabatic invariants are obtained.
基金Supported by the Key Disciplines' Building Foundation of Henan Institute of Educationthe Natural Science Foundation of Education Bureau of Henan Province of China under Grant No. 2009A14003
文摘The Mei symmetries and the Lie symmetries for nonholonomic controllable mechanical systems with relativistic rotational variable mass are studied. The differential equations of motion of the systems are established. The definition and criterion of the Mei symmetries and the Lie symmetries of the system are studied respectively. The necessary and sufficient condition under which the Mei symmetry is Lie symmetry is given. The condition under which the Mei symmetries can be led to a new kind of conserved quantity and the form of the conserved quantity are obtained. An example is given to illustrate the application of the results.
文摘This paper studies the perturbation to symmetries and adiabatic invariant for nonholonomic controllable mechanical systems with non-Chetaev type constraints. It gives the exact invariants introduced by the Lie symmetries of the nonholonomic controllable mechanical system with non-Chetaev type constraints without perturbation. Based on the definition of high-order adiabatic invarlants of mechanical system, the perturbation of Lie symmetries for nonholonomic controllable mechanical system with non-Chetaev type constraints with the action of small disturbances is investigated, and a new type of adiabatic invariant of system are obtained. In the end of this paper, an example is given to illustrate the application of the results.
文摘The control mechanism of mechanical bone remodeling at cellular level was investigated by means of an extensive parametric study on a theoretical model described in this paper. From a perspective of control mechanism, it was found that there are several control mechanisms working simultaneously in bone remodeling which is a complex process. Typically, an extensive parametric study was carried out for investigating model parameter space related to cell differentiation and apoptosis which can describe the fundamental cell lineage behaviors. After analyzing all the combinations of 728 permutations in six model parameters, we have identified a small number of parameter combinations that can lead to physiologically realistic responses which are similar to theoretically idealized physiological responses. The results presented in the work enhanced our understanding on mechanical bone remodeling and the identified control mechanisms can help researchers to develop combined pharmacological-mechanical therapies to treat bone loss diseases such as osteoporosis.
基金Financial supports for this work,provided by the National Natural Science Foundation of China(Nos.511204167 and 51574227)Chinese National Programs for Fundamental Research and Development(No.2013CB227905),are gratefully acknowledged
文摘A new approach named as steel pile method is innovatively proposed in this study to control severe floor heaves in gob-side entry retaining. It is required that the steel piles be installed in the floor corners with a certain interval before the influence of the dynamic pressure induced by current panel extraction. Using numerical simulation and theoretical analysis, this study investigated the interaction between the steel piles and the floor rocks during the service life of the steel piles, and revealed the mechanism of the steel piles in controlling floor heaves. The effect of the steel pile parameters on the control of floor heaves was presented and elaborated. It is found that the effectiveness of the steel piles in controlling floor heaves can be enhanced with greater installed dip angle, longer length and smaller interval of the steel piles.Compared with traditional methods, e.g., using floor anchor bolts and floor restoration, the advantages using steel pile were successfully defined in terms of controlling effect and economic benefits. It is hoped that the proposed method can contribute to the development of gob-side entry retaining technique.
基金Financial support for this work, provided by the National Natural Science Foundation of China (No. 51174195)the Graduate Student Scientific Research Innovation Project of the Jiangsu Province Ordinary University (No. CXZZ12_0954)the Research Foundation of the State Key Laboratory of Coal Resources and Mine Safety (No. SKLCRSM08X04)
文摘In order to avoid the deep-well oil shale roadway being deformed, damaged, or difficult to maintain after excavating and supporting in Haishiwan coal mine, this paper has analyzed the characteristics of the deformed roadway and revealed its failure mechanism by taking comprehensively the methods of field geological investigation, displacement monitoring of surrounding rock, rock properties and hydration properties experiments and field application tests. Based on this work, the high-resistance controlled yielding supporting principle is proposed, which is: to "resist" by high pre-tightening force and high stiff- ness in the early stage, to "yield" by making use of the controlled deformation of a yielding tube in the middle stage, and to "fix" by applying total-section Gunite in the later stage. A high-resistance controlled yielding supporting technique of "high pre-tightening force yielding anchor bolt + small-bore pre-tight- ening force anchor cable + rebar ladder beam + rhombic metal mesh + lagging gunite" has been estab- lished, and industrial on site testing implemented. The practical results show that the high-resistance controlled yielding supporting technique can effectively control the large deformation and long-time rheology of deep-well oil shale roadways and can provide beneficial references for the maintenance of other con-generic roadways.Deep-well Oil shale
基金sponsored by the National Key Research and Development Program of China(2021YFC2501800)the National Natural Science Foundation of China(No.U1909218)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.T2121004).
文摘Lung diseases associated with alveoli,such as acute respiratory distress syndrome,have posed a long-term threat to human health.However,an in vitro model capable of simulating different deformations of the alveoli and a suitable material for mimicking basement membrane are currently lacking.Here,we present an innovative biomimetic controllable strain membrane(BCSM)at an air–liquid interface(ALI)to reconstruct alveolar respiration.The BCSM consists of a high-precision three-dimensional printing melt-electrowritten polycaprolactone(PCL)mesh,coated with a hydrogel substrate—to simulate the important functions(such as stiffness,porosity,wettability,and ALI)of alveolar microenvironments,and seeded pulmonary epithelial cells and vascular endothelial cells on either side,respectively.Inspired by papercutting,the BCSM was fabricated in the plane while it operated in three dimensions.A series of the topological structure of the BCSM was designed to control various local-area strain,mimicking alveolar varied deformation.Lopinavir/ritonavir could reduce Lamin A expression under over-stretch condition,which might be effective in preventing ventilator-induced lung injury.The biomimetic lung-unit model with BCSM has broader application prospects in alveoli-related research in the future,such as in drug toxicology and metabolism.
基金sponsored by the National Natural Science Foundation of China(Nos.51134025 and 51274204)the New Century Excellent Talents in University(No.NCET-12-0965)
文摘Aiming at soft rock ground support issues under conditions of high stress and long-term water immersion, the ground failure mechanism is revealed by taking the deep-water sumps of Jiulong Mine as the engineering background and employing field investigation, tests of rock structure, mechanical properties and mineral composition. The main factors leading to the surrounding rock failure include the high and complex stress state of the water sumps, high-clay content and water-weakened rock, and the unreasonable support design. In this paper, the broken and fractured rock mass near roadway opening is considered as ground small-structure, and deep stable rock mass as ground large-structure. A support technology focusing on cutting off the water, strengthening the small structure of the rock and transferring the large structure of the rock is proposed. The proposed support technology of interconnecting the large and small structures, based on high-strength bolts, high-stiffness shotcrete layer plugging water,strengthening the small structure with deep-hole grouting and shallow-hole grouting, highpretensioned cables tensioned twice to make the large and small structures bearing the pressure evenly,channel-steel and high-pretensioned cables are used to control floor heave. The numerical simulation and field test show that this support system can control the rock deformation of the water sumps and provide technical support to similar roadway support designs.
基金support by the National Natural Science Foundation of China (Nos. 51374106 and 51434006)
文摘In view of the buckling failure caused by large deformation of Mesozoic soft rock roadway in Shajihai mining area, such as serious roof fall, rib spalling, floor heave, etc., based on the detail site investigation,theoretical analysis, mineral composition test, microstructure test, water-physical property test and field experiments were carried out. And we revealed the compound failure mechanism of Mesozoic soft rock roadway in Shajihai mining area, namely the molecule expansion-shear slip of weak structural plane-construction disturbance. On this basis, the coupling support technology whose core is constant resistance with large deformation bolt was proposed. The feature of this supporting technology is that a new type of structural composite material was used, which makes the supporting system not only has the ideal deformation characteristics, but also has high supporting resistance. Thus the fully release of plastic energy within surrounding rock and reasonable control of the thickness of the plastic ring were realized. Then the differential deformation between the surrounding rock and support was eliminated by the secondary coupling support of bolt–mesh–cable, and the bolt with high strength was applied in the base angle to control floor. Eventually the collaborative bearing system of surrounding rock–support was formed. Through field tests the validity and rationality of support was also verified.
文摘The ore-controlling mechanism of the bedding fault system in the massive sulfide deposits of the Wushancopper orefield may be generalized as the control of ore deposition by optimum surface in an ore-formingstructural trap. The mechanism has three major features: (1) timing of mineralization; (2) positioning of hostformation; and (3) dependence of ore-controlling structure on properties of rocks. The 'optimum surface' is adivisional structural plane which marks obvious difference in physical, chemical and mechanical properties andis favorable for mineralization. It is also a unity of structures. lithofacies and orebodies. The structural and geochemical characteristics of the ore deposits indicate the migration trend of the ma-jor characteristic clements in the ore-controlling fault belt: elements with a small radius (Si, Fe, Mg and Al)moved towards and concentrated at the center of the belt while large-radius ones (Ca, K and Na) were remotefrom the center.
基金the Graduate Students' Innovative Foundation of Chinanivcrsity of Petroleum(East China)under Grant No.S2006-31
文摘In this paper,we study the Noether-form invariance of nonholonomic mechanical controllable systems inphase space.Equations of motion of the controllable mechanical systems in phase space are presented.The definitionand the criterion for this system are presented.A new conserved quantity and the Noether conserved quantity deducedfrom the Noether-form invariance are obtained.An example is given to illustrate the application of the results.