期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A bionic controllable strain membrane for cell stretching at air–liquid interface inspired by papercutting 被引量:1
1
作者 Yuanrong Li Mingjun Xie +4 位作者 Shang Lv Yuan Sun Zhuang Li Zeming Gu Yong He 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期486-499,共14页
Lung diseases associated with alveoli,such as acute respiratory distress syndrome,have posed a long-term threat to human health.However,an in vitro model capable of simulating different deformations of the alveoli and... Lung diseases associated with alveoli,such as acute respiratory distress syndrome,have posed a long-term threat to human health.However,an in vitro model capable of simulating different deformations of the alveoli and a suitable material for mimicking basement membrane are currently lacking.Here,we present an innovative biomimetic controllable strain membrane(BCSM)at an air–liquid interface(ALI)to reconstruct alveolar respiration.The BCSM consists of a high-precision three-dimensional printing melt-electrowritten polycaprolactone(PCL)mesh,coated with a hydrogel substrate—to simulate the important functions(such as stiffness,porosity,wettability,and ALI)of alveolar microenvironments,and seeded pulmonary epithelial cells and vascular endothelial cells on either side,respectively.Inspired by papercutting,the BCSM was fabricated in the plane while it operated in three dimensions.A series of the topological structure of the BCSM was designed to control various local-area strain,mimicking alveolar varied deformation.Lopinavir/ritonavir could reduce Lamin A expression under over-stretch condition,which might be effective in preventing ventilator-induced lung injury.The biomimetic lung-unit model with BCSM has broader application prospects in alveoli-related research in the future,such as in drug toxicology and metabolism. 展开更多
关键词 biomimetic air-blood barrier composite material design controllable mechanical stimulus structure
下载PDF
A kind of biomimetic control method to anthropomorphize a redundant manipulator for complex tasks 被引量:6
2
作者 MO Yang JIANG ZhiHong +2 位作者 LI Hui YANG Hong HUANG Qiang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第1期14-24,共11页
It is an urgent problem for robots to operate complex tasks with some unknown motion mechanisms caused by the strong coupling of force and motion. However, humans can perform complex tasks well due to their natural ev... It is an urgent problem for robots to operate complex tasks with some unknown motion mechanisms caused by the strong coupling of force and motion. However, humans can perform complex tasks well due to their natural evolution and postnatal training. A novel biomimetic control method based on a human motion mechanism with high movement adaptability is proposed in this paper. The core is to present a novel variable-parameter compliance controller based on human operation mechanisms with an action-planning method derived from optimization by human motion, and the main contribution is to change the parameters of compliance controller according to human operating intention synchronized with humanoid motion;this change could establish a humanoid map between the force and motion for a seven degree-of-freedom redundant manipulator to deal with the unknown motion mechanism in complex tasks, so the redundant manipulator can operate complex tasks with high performance. Sufficient experiments were performed, and the results validated the effectiveness of the proposed algorithm. 展开更多
关键词 redundant manipulator biomimetic control humanoid mapping complex task
原文传递
Fabrication of a biomimetic controllable adhesive surface by ultraprecision multistep and layered scribing and casting molding 被引量:4
3
作者 WANG Wei XIE ZongWu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第8期1814-1826,共13页
Wedge-shaped microstructures have the ability to reproduce the excellent adhesive properties of geckos’feet because of their unique anisotropic structure.In particular,the controllability of the wedge-shaped microstr... Wedge-shaped microstructures have the ability to reproduce the excellent adhesive properties of geckos’feet because of their unique anisotropic structure.In particular,the controllability of the wedge-shaped microstructures on adhesion is beneficial to the undisturbed grasp or the capture of space targets.However,the problem currently remains of how to process it efficiently and with high quality.Here a strategy called ultraprecision multistep and layered scribing is proposed for the manufacture of the biomimetic controllable adhesive surface.The results show that the metal master mold prepared based on the manufacturing strategy has not only good surface topography but also high reliability and durability.Furthermore,the controllable adhesive surface of 1.96 cm2,fabricated by the proposed manufacturing strategy,has a normal adhesion of 1.012 N,and the corresponding shear friction and adhesion coefficient are 3.105 N and 4.82,respectively.Additionally,the controllable adhesive surface has been shown to be approximately superhydrophobic and also to possess the properties of controllable adhesion and dynamic adhesion.Also,after 250 adhesion-detachment cycles,the normal adhesion and shear friction only decrease by 5%and 3%,respectively.The research realizes an environmentally friendly and efficient method by which to manufacture a durable metal mold for fabricating a biomimetic controllable adhesive surface,laying a foundation for its effective application in the adherence of space-floating targets. 展开更多
关键词 continuous and tilted wedge-shaped microstructures biomimetic controllable adhesive surface ultraprecision multistep and layered scribing controllable adhesion dynamic adhesion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部