期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Underactuated spacecraft angular velocity stabilization and three-axis attitude stabilization using two single gimbal control moment gyros 被引量:6
1
作者 Lei Jin Shijie Xu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第2期279-288,共10页
Angular velocity stabilization control and attitude stabilization control for an underactuated spacecraft using only two single gimbal control moment gyros (SGCMGs) as actuators is investigated. First of all, the dy... Angular velocity stabilization control and attitude stabilization control for an underactuated spacecraft using only two single gimbal control moment gyros (SGCMGs) as actuators is investigated. First of all, the dynamic model of the underactuated spacecraft is established and the singularity of different configurations with the two SGCMGs is analyzed. Under the assumption that the gimbal axes of the two SGCMGs are installed in any direction, and that the total system angular momentum is not zero, a state feedback control law via Lyapunov method is designed to globally asymptotically stabilize the angular velocity of spacecraft. Under the assumption that the gimbal axes of the two SGCMGs are coaxially installed along anyone of the three principal axes of spacecraft inertia, and that the total system angular momentum is zero, a discontinuous state feedback control law is designed to stabilize three-axis attitude of spacecraft with respect to the inertial frame. Furthermore, the singularity escape of SGCMGs for the above two control problems is also studied. Simulation results demonstrate the validity of the control laws. 展开更多
关键词 Single gimbal control moment gyro ·Undcractuated spacecraft · Angular velocity stabilization · Three-axis attitude stabilization·Singularity
下载PDF
Neural network-based fault diagnosis for spacecraft with single-gimbal control moment gyros 被引量:5
2
作者 Yuandong LI Qinglei HU Xiaodong SHAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第7期261-273,共13页
This paper proposes a neural network-based fault diagnosis scheme to address the problem of fault isolation and estimation for the Single-Gimbal Control Moment Gyroscopes(SGCMGs)of spacecraft in a periodic orbit.To th... This paper proposes a neural network-based fault diagnosis scheme to address the problem of fault isolation and estimation for the Single-Gimbal Control Moment Gyroscopes(SGCMGs)of spacecraft in a periodic orbit.To this end,a disturbance observer based on neural network is developed for active anti-disturbance,so as to improve the accuracy of fault diagnosis.The periodic disturbance on orbit can be decoupled with fault by resorting to the fitting and memory ability of neural network.Subsequently,the fault diagnosis scheme is established based on the idea of information fusion.The data of spacecraft attitude and gimbals position are combined to implement fault isolation and estimation based on adaptive estimator and neural network.Then,an adaptive sliding mode controller incorporating the disturbance and fault estimation results is designed to achieve active fault-tolerant control.In addition,the paper gives the proof of the stability of the proposed schemes,and the simulation results show that the proposed scheme achieves better diagnosis and control results than compared algorithm. 展开更多
关键词 control moment gyro Fault diagnosis Fault-tolerant control Neural networks Spacecraft attitude control
原文传递
Local controllability and stabilization of spacecraft attitude by two single-gimbal control moment gyros 被引量:5
3
作者 Gui Haichao Jin Lei Xu Shijie 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第5期1218-1226,共9页
The attitude control problem of a spacecraft underactuated by two single-gimbal control moment gyros (SGCMGs) is investigated. Small-time local controllability (STLC) of the attitude dynamics of the spacecraft-SGC... The attitude control problem of a spacecraft underactuated by two single-gimbal control moment gyros (SGCMGs) is investigated. Small-time local controllability (STLC) of the attitude dynamics of the spacecraft-SGCMGs system is analyzed via nonlinear controllability theory. The conditions that guarantee STLC of the spacecraft attitude by two non-coaxial SGCMGs are obtained with the momentum of the SGCMGs as inputs, implying that the spacecraft attitude is STLC when the total angular momentum of the whole system is zero. Moreover, our results indi- cate that under the zero-momentum restriction, full attitude stabilization is possible for a spacecraft using two non-coaxial SGCMGs. For the case of two coaxial SGCMGs, the STLC property of the spacecraft cannot be determined. In this case, an improvement to the previous full attitude stabilizing control law, which requires zero-momentum presumption, is proposed to account for the singu- larity of SGCMGs and enhance the steady state performance. Numerical simulation results demonstrate the effectiveness and advantages of the new control law. 展开更多
关键词 Attitude control Single-gimbal control moment gyro SINGULARITY Small-time local controllability Underactuated spacecraft
原文传递
Singularity analysis for single gimbal control moment gyroscope system using space expansion method 被引量:4
4
作者 Yunhua WU Feng HAN +2 位作者 Bing HUA Zhiming CHEN Feng YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第4期782-794,共13页
Control Moment Gyroscope(CMG) is an effective candidate for agile satellites and large spacecraft attitude control because of its powerful torque amplification capability. The most serious situation, however, in usi... Control Moment Gyroscope(CMG) is an effective candidate for agile satellites and large spacecraft attitude control because of its powerful torque amplification capability. The most serious situation, however, in using CMG is the inherent geometric singularity problem, where there's no torque output along a particular direction. Space expansion method has been proposed in this work for the singularity analysis. Based on inverse mapping transformation, an expanded Jacobian matrix which is a full rank square matrix is obtained. The singular angle sets of the 3-parallel cluster and pyramid cluster are distinguished using space expansion method. An effective hybrid steering strategy, able to deal with the elliptic singularity, is further proposed. Simulation results demonstrate the excellent performance of the proposed steering logic compared to the generalized singular robust logic and pseudo inverse logic in terms of energy consumption and torque error. 展开更多
关键词 Agile spacecraft control moment gyro Singularity analysis Space expansion method Steering strategy
原文传递
Mixture steering law design for control moment gyroscopes 被引量:2
5
作者 ZHANG JingRui LUO Yang +1 位作者 LIU Wei ZHANG Yao 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第1期138-142,共5页
Focusing on the singularities of a spacecraft using control moment gyros(CMGs)to do the large angle maneuvers,a new mixture steering law is proposed to avoid the singularities.According to this method,if the CMGs are ... Focusing on the singularities of a spacecraft using control moment gyros(CMGs)to do the large angle maneuvers,a new mixture steering law is proposed to avoid the singularities.According to this method,if the CMGs are far away from the singularity,the Moore-Penrose pseudo-inverse steering law(MP)is used directly.If the CMGs are close to the singularity,instead of solving the inverse matrix,a set of optimal gimbal angles are sought for the singular measurement to reach the maximum,which can avoid the singularities.Simulations show that the designed steering law enables the spacecraft to carry out the large angle maneuver and avoid the singularities simultaneously. 展开更多
关键词 control moment gyro (CMG) angular momentum SINGULARITY steering law
原文传递
Geometric Analysis of Singularity for Single-Gimbal Control Moment Gyro Systems 被引量:7
6
作者 汤亮 徐世杰 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第4期295-303,共9页
This research is focused on the singularity analysis for single-gimbal control moment gyros systems (SCMGs) which include two types, with constant speed (CSCMG) or variable speed (VSCMG) rotors. Through angular ... This research is focused on the singularity analysis for single-gimbal control moment gyros systems (SCMGs) which include two types, with constant speed (CSCMG) or variable speed (VSCMG) rotors. Through angular momentum hypersurfaces of singular states, the passable and impassable singular points are discriminated easily, meanwhile the information about how much the angular momentum workspace as well as the steering capability available is provided directly. It is obvious that the null motions of steering laws are more effective for the five pyramid configuration(FPC) than for the pyramid configuration(PC) from the singular plots. The possible degenerate hyperbolic singular points of the preceding configurations are calculated and the distinctness of them is denoted by the Gaussian curvature. Furthermore, failure problems to steer integrated power and attitude control system (IPACS) are also analyzed. A sufficient condition of choosing configurations of VSCMGs to guarantee the IPACS steering is given. The angular momentum envelops of VSCMGs, in a given energy and a limited range of rotor speeds, are plotted. The connection and distinctness between CSCMGs and VSCMGs are obtained from the point of view of envelops. 展开更多
关键词 attitude control single-gimbal control moment gyros SINGULARITY geometric analysis angular momentum hypersurfaces store energy
下载PDF
Attitude control of a rigid spacecraft with one variable-speed control moment gyro
7
作者 Hai-Chao Gui Lei Jin Shi-Jie Xu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第5期749-760,共12页
Nonlinear controllability and attitude stabilization are studied for the underactuated nonholonomic dynamics of a rigid spacecraft with one variable-speed control moment gyro (VSCMG), which supplies only two interna... Nonlinear controllability and attitude stabilization are studied for the underactuated nonholonomic dynamics of a rigid spacecraft with one variable-speed control moment gyro (VSCMG), which supplies only two internal torques. Nonlinear controllability theory is used to show that the dynamics are locally controllable from the equilibrium point and thus can be asymptotically stabilized to the equilibrium point via time-invariant piecewise continuous feedback laws or time-periodic continuous feedback laws. Specifically, when the total angular momentum of the spacecraft-VSCMG system is zero, any orientation can be a controllable equilib- rium attitude. In this case, the attitude stabilization problem is addressed by designing a kinematic stabilizing law, which is implemented through a nonlinear proportional and deriva- tive controller, using the generalized dynamic inverse (GDI) method. The steady-state instability inherent in the GDI con- troller is elegantly avoided by appropriately choosing control gains. In order to obtain the command gimbal rate and wheel acceleration from control torques, a simple steering logic is constructed to accommodate the requirements of attitude sta- bilization and singularity avoidance of the VSCMG. Illustrative numerical examples verify the efficacy of the proposed control strategy. 展开更多
关键词 Attitude control inverse Nonholonomic system Generalized dynamic Small-time local controlla- bility - Stabilization Variable-speed control moment gyro
下载PDF
Model Development and Adaptive Imbalance Vibration Control of Magnetic Suspended System 被引量:10
8
作者 汤亮 陈义庆 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第5期434-442,共9页
A system model is developed to describe the translational and rotational motion of an active-magnetic-bearing-suspended rigid rotor in a single-gimbal control moment gyro onboard a rigid satellite. This model strictly... A system model is developed to describe the translational and rotational motion of an active-magnetic-bearing-suspended rigid rotor in a single-gimbal control moment gyro onboard a rigid satellite. This model strictly reflects the motion characteristics of the rotor by considering the dynamic and static imbalance as well as the coupling between the gimbal's and the rotor's motion on a satellite platform. Adaptive auto-centering control is carefully constructed for the rotor with unknown dynamic and static imbalance. The rotor makes its rotation about the principal axis of inertia through identifying the small rotational angles between the geometric axis and the principal axis as well as the displacements from the geometric center to the mass center so as to tune a stabilizing controller composed of a decentralized PD controller with cross-axis proportional gains and high- and low-pass filters. The main disturbance in the wheel spinning can thereby be completely removed and the vibration acting on the satellite attenuated. 展开更多
关键词 SATELLITE single-gimbal control moment gyro IMBALANCE active magnetic bearing JITTER
下载PDF
Error analysis and a new steering law design for spacecraft control system using SGCMGs 被引量:7
9
作者 Jin Jin Jing-Rui Zhang Zao-Zhen Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第5期803-808,共6页
Based on the singular value decomposition theory,this paper analyzed the mechanism of escaping/avoiding singularity using generalized and weighted singularity-robust steering laws for a spacecraft that uses single gim... Based on the singular value decomposition theory,this paper analyzed the mechanism of escaping/avoiding singularity using generalized and weighted singularity-robust steering laws for a spacecraft that uses single gimbal control moment gyros (SGCMGs) as the actuator for the attitude control system.The expression of output-torque error is given at the point of singularity,proving the incompatible relationship between the gimbal rate and the output-torque error.The method of establishing a balance between the gimbal rate and the output-torque error is discussed,and a new steering law is designed.Simulation results show that the proposed steering law can effectively drive SGCMGs to escape away from singularities. 展开更多
关键词 Single gimbal control moment gyros (SGCMGs) Attitude control Singularity analysis Steering law
下载PDF
Attitude control for part actuator failure of agile small satellite 被引量:16
10
作者 J.R.Zhang A.Rachid Y.Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第4期463-468,共6页
The stability and singularity problem of agile small satellite (ASS) with actuator failure is discussed in this paper. Firstly, the three-axis stabilized controller of an ASS is designed, where micro control moment ... The stability and singularity problem of agile small satellite (ASS) with actuator failure is discussed in this paper. Firstly, the three-axis stabilized controller of an ASS is designed, where micro control moment gyros (MCMG's) in pyramid configuration (PC) is used as the actuator. By using the same controller and steering law, the control results before and after one gyro fails are compared by simulation. The variation of singular momentum envelope before and after one gyro fails is also compared. The simulation results show that the failure intensively decreases the capacity of output torque, which leads to the emergence of more singular points and the rapid saturation of MCMG's. Finally, the parameters of system controller are changed to compare the control effect. 展开更多
关键词 Micro control moment gyros (MCMG's) · Gyro failure ·Singularity analysis · Agile small satellite
下载PDF
An improved constrained steering law for SGCMGs with DPC 被引量:1
11
作者 Lei Jin Shijie Xu Department of Guidance, Navigation and Control,School of Astronautics, Beihang University, 100191 Beijing, China 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第5期713-720,共8页
An improved constrained (IC) steering law for single gimbal control moment gyros (SGCMGs) with deformed pyramid configuration (DPC) is proposed, First of all, the original system with five pyramid configuration ... An improved constrained (IC) steering law for single gimbal control moment gyros (SGCMGs) with deformed pyramid configuration (DPC) is proposed, First of all, the original system with five pyramid configuration (FPC) whose two adjacent gyros are in failure state is reconfigured as a degraded system with DPC. Then, the singular angular momentum hypersurfaces of the original and the degraded systems are plotted via the singular angular momentum equa- tion of SGCMGs. Based on singular surfaces, the differences between FPC and DPC in singularity and momentum envelope are obtained directly, which provide an important reference for steering law design of DPC. Finally, an IC steering law is designed and applied to DPC. The simulation results demonstrate that the IC steering law has advantages in simplicity of calculation, avoidance of singularity and exactness of output torque, which endow the degraded system with fine controllability in a restricted workspace. 展开更多
关键词 Single gimbal control moment gyros (SGCMGs) - Deformed pyramid configuration (DPC) Failure Singularity - Steering law
下载PDF
Steering laws analysis of SGCMGs based on singular value decomposition theory
12
作者 张景瑞 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第8期1013-1021,共9页
The steering laws of single gimbal control moment gyros (SGCMGs) are analyzed and compared in this paper for a spacecraft attitude control system based on singular value decomposition (SVD) theory. The mechanism o... The steering laws of single gimbal control moment gyros (SGCMGs) are analyzed and compared in this paper for a spacecraft attitude control system based on singular value decomposition (SVD) theory. The mechanism of steering laws escaping singularity, especially how the steering laws affect singularity of gimbal configuration and the output torque error, is studied using SVD theory. Performance of various steering laws are analyzed and compared quantitatively by simulation. The obtained results can be used as a reference for designers. 展开更多
关键词 single gimbal control moment gyros singular value decomposition steering law SINGULARITY
下载PDF
The output torque estimation of MCMG for agile satellites 被引量:5
13
作者 Jingrui Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第1期141-146,共6页
Studied in this paper are the attitude control law design and the output torque estimation problem of micro control moment gyros (MCMGs) for the agile satellites executing rapid attitude maneuver mission. An algorit... Studied in this paper are the attitude control law design and the output torque estimation problem of micro control moment gyros (MCMGs) for the agile satellites executing rapid attitude maneuver mission. An algorithm is proposed for estimating the output torques and the gimbal angular rates of MCMGs, which can help engineers to choose reasonable size for actuators so that the cost of satellite can be decreased. According to some special maneuver missions, a numerical example of attitude control system for a small satellite with MCMGs in pyramid configuration is studied, and the simulation results validate the proposed estimation algorithm. 展开更多
关键词 Agile satellite Micro control moment gyro Rapid attitude maneuver
下载PDF
A new steering approach for VSCMGs with high precision 被引量:3
14
作者 Huang Xinghong Jia Yinghong +1 位作者 Xu Shijie Huang Tingxuan 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第6期1673-1684,共12页
A new variable speed control moment gyro(VSCMG) steering law is proposed in order to achieve higher torque precision. The dynamics of VSCMGs is established, and two work modes are then designed according to command to... A new variable speed control moment gyro(VSCMG) steering law is proposed in order to achieve higher torque precision. The dynamics of VSCMGs is established, and two work modes are then designed according to command torque: control momentum gyro(CMG)/reaction wheel(RW) hybrid mode for the large torque case and RW single mode for the small. When working in the CMG/RW hybrid mode, the steering law deals with the gimbal dead-zone nonlinearity through compensation by RW sub-mode. This is in contrast to the conventional CMG singularity avoidance and wheel speed equalization, as well as the proof of definitely hyperbolic singular property of the CMG sub-mode. When working in the RW single mode, the motion of gimbals will be locked. Both the transition from CMG/RW hybrid mode to RW single mode and the reverse are studied. During the transition, wheel speed equalization and singularity avoidance of both the CMG and RW submodes are considered. A steering law for the RWs with locked gimbals is presented. It is shown by simulations that the VSCMGs with this new steering law could reach a better torque precision than the normal CMGs in the case of both large and small torques. 展开更多
关键词 Attitude control Dead-zone nonlinearity Integrated singularity measurement Singularity avoidance Variable speed control moment gyros(VSCMGs) Wheel speed equalization
原文传递
A Novel Model Calibration Method for Active Magnetic Bearing Based on Deep Reinforcement Learning 被引量:2
15
作者 Bingyun Yang Cong Peng +1 位作者 Fei Jiang Sumu Shi 《Guidance, Navigation and Control》 2023年第3期110-128,共19页
Active magnetically suspended control moment gyro is a novel attitude control actuator for satellites.It is mainly composed of rotor,active magnetic bearing(AMB)and motor.As a crucial supporting component of control m... Active magnetically suspended control moment gyro is a novel attitude control actuator for satellites.It is mainly composed of rotor,active magnetic bearing(AMB)and motor.As a crucial supporting component of control moment gyro,the performance of AMB is directly related to the stability of the rotor system and pointing precision of the satellites.Therefore,calibrating the parameters of AMB is essential for the realization of super-quiet satellites.This paper proposed a model calibration method,known as the deep reinforcement learningbased model calibration frame(DRLMC).First,the dynamics of magnetic bearing with damage degradation over its life cycle are modeled.Subsequently,the calibration process is formulated as a Markov Decision Process(MDP),and reinforcement learning(RL)is employed to infer the degradation parameters.In addition,experience replay and target network update mechanism are introduced to guarantee stability.Simulation results demonstrate that the proposed method identi¯es force-current factor of AMB during its degradation process e®ectively.Furthermore,additional experiments con¯rm the robustness of the DRLMC approach. 展开更多
关键词 control moment gyro active magnetic bearing model calibration reinforcement learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部