期刊文献+
共找到22,366篇文章
< 1 2 250 >
每页显示 20 50 100
Dynamic simulation analysis of molten salt reactor-coupled air-steam combined cycle power generation system 被引量:2
1
作者 Jing-Lei Huang Guo-Bin Jia +3 位作者 Li-Feng Han Wen-Qian Liu Li Huang Zheng-Han Yang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期222-233,共12页
A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the mol... A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the molten salt reactor and power system.This model considers the impact of thermal properties of fluid variation on accuracy and has been validated with Simulink.This study reveals the capability of the control system to compensate for anomalous situations and maintain shaft stability in the event of perturbations occurring in high-temperature molten salt tank outlet parameters.Meanwhile,the control system’s impact on the system’s dynamic characteristics under molten salt disturbance is also analyzed.The results reveal that after the disturbance occurs,the controlled system benefits from the action of the control,and the overshoot and disturbance amplitude are positively correlated,while the system power and frequency eventually return to the initial values.This simulation model provides a basis for utilizing molten salt reactors for power generation and maintaining grid stability. 展开更多
关键词 Molten salt reactor Combined cycle Dynamic characteristic CONTROL
下载PDF
Finite-time Prescribed Performance Time-Varying Formation Control for Second-Order Multi-Agent Systems With Non-Strict Feedback Based on a Neural Network Observer 被引量:1
2
作者 Chi Ma Dianbiao Dong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1039-1050,共12页
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli... This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm. 展开更多
关键词 Finite-time control multi-agent systems neural network prescribed performance control time-varying formation control
下载PDF
Vibration Control of A Flexible Marine Riser System Subject to Input Dead Zone and Extraneous Disturbances 被引量:1
3
作者 ZHOU Li WANG Guo-rong WAN Min 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期271-284,共14页
An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control... An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control algorithm can update the control law online through real-time data to make the controller adapt to the environment and improve the control precision.Specifically,based on the adaptive backstepping framework,virtual control laws and Lyapunov functions are designed for each subsystem.Three direction interference observers are designed to track the timevarying boundary disturbance.On this basis,the inverse of the dead zone and linear state transformation are used to compensate for the original system and eliminate the adverse effects of the dead zone.In addition,the stability of the closed-loop system is proven by Lyapunov stability theory.All the system states are bounded,and the vibration offset of the riser converges to a small area of the initial position.Finally,four examples of flexible marine risers are simulated in MATLAB to verify the effectiveness of the proposed controller. 展开更多
关键词 adaptive backstepping control disturbance observer flexible marine riser input dead zone vibration control
下载PDF
An Integrated Control Framework for Torque Vectoring and Active Suspension System 被引量:1
4
作者 Jiwei Feng Jinhao Liang +6 位作者 Yanbo Lu Weichao Zhuang Dawei Pi Guodong Yin Liwei Xu Pai Peng Chaobin Zhou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期62-73,共12页
Four-wheel independently driven electric vehicles(FWID-EV)endow a flexible and scalable control framework to improve vehicle performance.This paper integrates the torque vectoring and active suspension system(ASS)to e... Four-wheel independently driven electric vehicles(FWID-EV)endow a flexible and scalable control framework to improve vehicle performance.This paper integrates the torque vectoring and active suspension system(ASS)to enhance the vehicle’s longitudinal and vertical motion control performance.While the nonlinear characteristic of the tire model leads to a relatively heavier computational burden.To facilitate the controller design and ease the load,a half-vehicle dynamics system is built and simplified to the linear-time-varying(LTV)model.Then a model predictive controller is developed by formulating the objective function by comprehensively considering the safety,energy-saving and comfort requirements.The in-wheel motor efficiency and the power loss of tire slip are treated as optimization indices in this work to reduce energy consumption.Finally,the effectiveness of the proposed controller is verified through the rapid-control-prototype(RCP)test.The results demonstrate the enhancement of the energy-saving as well as comfort on the basis of vehicle stability. 展开更多
关键词 Four-wheel independently driven electric vehicles Tire nonlinearity Linear-time-varying(LTV)model Model predictive control Rapid control prototype
下载PDF
A review of artificial intelligence applications in high-speed railway systems 被引量:2
5
作者 Xuehan Li Minghao Zhu +3 位作者 Boyang Zhang Xiaoxuan Wang Zha Liu Liang Han 《High-Speed Railway》 2024年第1期11-16,共6页
In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,e... In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions. 展开更多
关键词 High-speed railway Artificial intelligence Intelligent distribution Intelligent control Intelligent scheduling
下载PDF
Design and analysis of an advanced thermal management system for the solar close observations and proximity experiments spacecraft 被引量:1
6
作者 Liu Liu Kangli Bao +4 位作者 Jianchao Feng Xiaofei Zhu Haoyu Wang Xiaofeng Zhang Jun Lin 《Astronomical Techniques and Instruments》 CSCD 2024年第1期52-61,共10页
In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relat... In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relationship and functions of the integrated database,the intelligent thermal control system and the efficient liquid cooling system in the ATMS are elaborated upon.For the complex thermal field regulation system and extreme space thermal environment,a modular simulation and thermal field planning method are proposed,and the feasibility of the planning algorithm is verified by numerical simulation.A solar array liquid cooling system is developed,and the system simulation results indicate that the temperatures of the solar arrays meet the requirements as the spacecraft flies by perihelion and aphelion.The advanced thermal management study supports the development of the SCOPE program and provides a reference for the thermal management in other deep-space exploration programs. 展开更多
关键词 Solar Close Observations and Proximity Experiments Adaptive thermal control method Thermal field planning method Pumped liquid cooling system Advanced thermal management system
下载PDF
Noise-Tolerant ZNN-Based Data-Driven Iterative Learning Control for Discrete Nonaffine Nonlinear MIMO Repetitive Systems
7
作者 Yunfeng Hu Chong Zhang +4 位作者 Bo Wang Jing Zhao Xun Gong Jinwu Gao Hong Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期344-361,共18页
Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning ... Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process. 展开更多
关键词 Adaptive control control system synthesis data-driven iterative learning control neurocontroller nonlinear discrete time systems
下载PDF
Risk-Informed Model-Free Safe Control of Linear Parameter-Varying Systems
8
作者 Babak Esmaeili Hamidreza Modares 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第9期1918-1932,共15页
This paper presents a risk-informed data-driven safe control design approach for a class of stochastic uncertain nonlinear discrete-time systems.The nonlinear system is modeled using linear parameter-varying(LPV)syste... This paper presents a risk-informed data-driven safe control design approach for a class of stochastic uncertain nonlinear discrete-time systems.The nonlinear system is modeled using linear parameter-varying(LPV)systems.A model-based probabilistic safe controller is first designed to guarantee probabilisticλ-contractivity(i.e.,stability and invariance)of the LPV system with respect to a given polyhedral safe set.To obviate the requirement of knowing the LPV system model and to bypass identifying its open-loop model,its closed-loop data-based representation is provided in terms of state and scheduling data as well as a decision variable.It is shown that the variance of the closedloop system,as well as the probability of safety satisfaction,depends on the decision variable and the noise covariance.A minimum-variance direct data-driven gain-scheduling safe control design approach is presented next by designing the decision variable such that all possible closed-loop system realizations satisfy safety with the highest confidence level.This minimum-variance approach is a control-oriented learning method since it minimizes the variance of the state of the closed-loop system with respect to the safe set,and thus minimizes the risk of safety violation.Unlike the certainty-equivalent approach that results in a risk-neutral control design,the minimum-variance method leads to a risk-averse control design.It is shown that the presented direct risk-averse learning approach requires weaker data richness conditions than existing indirect learning methods based on system identification and can lead to a lower risk of safety violation.Two simulation examples along with an experimental validation on an autonomous vehicle are provided to show the effectiveness of the presented approach. 展开更多
关键词 Data-driven control linear parameter-varying systems probabilistic control safe control
下载PDF
Nonlinear robust adaptive control for bidirectional stabilization system of all-electric tank with unknown actuator backlash compensation and disturbance estimation
9
作者 Shusen Yuan Wenxiang Deng +1 位作者 Jianyong Yao Guolai Yang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期144-158,共15页
Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate trackin... Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate tracking control for bidirectional stabilization system of moving all-electric tank with actuator backlash and unmodeled disturbance is solved.By utilizing the smooth adaptive backlash inverse model,a nonlinear robust adaptive feedback control scheme is presented.The unknown parameters and unmodelled disturbance are addressed separately through the derived parametric adaptive function and the continuous nonlinear robust term.Because the unknown backlash parameters are updated via adaptive function and the backlash effect can be suppressed successfully by inverse operation,which ensures the system stability.Meanwhile,the system disturbance in the high maneuverable environment can be estimated with the constructed adaptive law online improving the engineering practicality.Finally,Lyapunov-based analysis proves that the developed controller can ensure the tracking error asymptotically converges to zero even with unmodeled disturbance and unknown actuator backlash.Contrast co-simulations and experiments illustrate the advantages of the proposed approach. 展开更多
关键词 Bidirectional stabilization system Robust control Adaptive control Backlash inverse Disturbance estimation
下载PDF
Ultimately Bounded Output Feedback Control for Networked Nonlinear Systems With Unreliable Communication Channel: A Buffer-Aided Strategy
10
作者 Yuhan Zhang Zidong Wang +2 位作者 Lei Zou Yun Chen Guoping Lu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1566-1578,共13页
This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication... This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy. 展开更多
关键词 Buffer-aided strategy neural networks nonlinear control output-feedback control unreliable communication channel
下载PDF
Robust fixed-time flight controller for a dual-system convertible UAV in the cruise mode
11
作者 Lulu Chen Zhenbao Liu +2 位作者 Qingqing Dang Wen Zhao Wenyu Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期53-66,共14页
This paper investigates the attitude tracking control problem for the cruise mode of a dual-system convertible unmanned aerial vehicle(UAV)in the presence of parameter uncertainties,unmodeled uncertainties and wind di... This paper investigates the attitude tracking control problem for the cruise mode of a dual-system convertible unmanned aerial vehicle(UAV)in the presence of parameter uncertainties,unmodeled uncertainties and wind disturbances.First,a fixed-time disturbance observer(FXDO)based on the bi-limit homogeneity theory is designed to estimate the lumped disturbance of the convertible UAV model.Then,a fixed-time integral sliding mode control(FXISMC)is combined with the FXDO to achieve strong robustness and chattering reduction.Bi-limit homogeneity theory and Lyapunov theory are applied to provide detailed proof of the fixed-time stability.Finally,numerical simulation experimental results verify the robustness of the proposed algorithm to model parameter uncertainties and wind disturbances.In addition,the proposed algorithm is deployed in a open-source UAV autopilot and its effectiveness is further demonstrated by hardware-in-the-loop experimental results. 展开更多
关键词 Convertible UAV Flight control Disturbance observer Fixed-time control
下载PDF
Control Strategies for Digital Twin Systems
12
作者 Guo-Ping Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期170-180,共11页
With the continuous breakthrough in information technology and its integration into practical applications, industrial digital twins are expected to accelerate their development in the near future. This paper studies ... With the continuous breakthrough in information technology and its integration into practical applications, industrial digital twins are expected to accelerate their development in the near future. This paper studies various control strategies for digital twin systems from the viewpoint of practical applications.To make full use of advantages of digital twins for control systems, an architecture of digital twin control systems, adaptive model tracking scheme, performance prediction scheme, performance retention scheme, and fault tolerant control scheme are proposed. Those schemes are detailed to deal with different issues on model tracking, performance prediction, performance retention, and fault tolerant control of digital twin systems. Also, the stability of digital twin control systems is analysed. The proposed schemes for digital twin control systems are illustrated by examples. 展开更多
关键词 Digital twin control systems fault tolerant control model tracking performance prediction performance retention
下载PDF
A PI+R Control Scheme Based on Multi-Agent Systems for Economic Dispatch in Isolated BESSs
13
作者 Yalin Zhang Zhongxin Liu Zengqiang Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第10期2154-2165,共12页
Battery energy storage systems(BESSs)are widely used in smart grids.However,power consumed by inner impedance and the capacity degradation of each battery unit become particularly severe,which has resulted in an incre... Battery energy storage systems(BESSs)are widely used in smart grids.However,power consumed by inner impedance and the capacity degradation of each battery unit become particularly severe,which has resulted in an increase in operating costs.The general economic dispatch(ED)algorithm based on marginal cost(MC)consensus is usually a proportional(P)controller,which encounters the defects of slow convergence speed and low control accuracy.In order to solve the distributed ED problem of the isolated BESS network with excellent dynamic and steady-state performance,we attempt to design a proportional integral(PI)controller with a reset mechanism(PI+R)to asymptotically promote MC consensus and total power mismatch towards 0 in this paper.To be frank,the integral term in the PI controller is reset to 0 at an appropriate time when the proportional term undergoes a zero crossing,which accelerates convergence,improves control accuracy,and avoids overshoot.The eigenvalues of the system under a PI+R controller is well analyzed,ensuring the regularity of the system and enabling the reset mechanism.To ensure supply and demand balance within the isolated BESSs,a centralized reset mechanism is introduced,so that the controller is distributed in a flow set and centralized in a jump set.To cope with Zeno behavior and input delay,a dwell time that the system resides in a flow set is given.Based on this,the system with input delays can be reduced to a time-delay free system.Considering the capacity limitation of the battery,a modified MC scheme with PI+R controller is designed.The correctness of the designed scheme is verified through relevant simulations. 展开更多
关键词 Battery energy storage system(BESS) distributed control economic dispatch multi-agent system reset control
下载PDF
Path Tracking Controller Design of Automated Parking Systems via NMPC with an Instructible Solution
14
作者 Liang Chen Zhaobo Qin +2 位作者 Manjiang Hu Yougang Bian Xiaoyan Peng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期353-367,共15页
Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking acc... Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking accidents.The paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which is generated by the modified rear-wheel feedback method(RF-LNMPC)in order to improve the overall path tracking accuracy in parking conditions.Firstly,A discrete-time RF-LNMPC considering the position and attitude of the parking vehicle is proposed to increase the success rate of automated parking effectively.Secondly,the RF-LNMPC problem with a multi-objective cost function is solved by the Interior-Point Optimization,of which the iterative initial values are described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the performance of local optimal solution.Thirdly,the details on the computation of the terminal constraint and terminal cost for the linear time-varying case is presented.The closed-loop stability is verified via Lyapunov techniques by considering the terminal constraint and terminal cost theoretically.Finally,the proposed RF-LNMPC is implemented on a selfdriving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical parking conditions.The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed method which can be applied in practical use in the near future. 展开更多
关键词 Automated parking Path tracking controller Nonlinear model predictive control Monte Carlo analysis
下载PDF
Optimizing PID controller parameters for robust automatic voltage regulator system through indirect design approach-2
15
作者 Mohd Zaidi Mohd Tumari Mohd Ashraf Ahmad +1 位作者 Mohd Riduwan Ghazali Mohd Helmi Suid 《Global Energy Interconnection》 EI CSCD 2024年第5期682-696,共15页
Automatic voltage regulators(AVR)are designed to manipulate a synchronous generator’s voltage level automatically.Proportional integral derivative(PID)controllers are typically used in AVR systems to regulate voltage... Automatic voltage regulators(AVR)are designed to manipulate a synchronous generator’s voltage level automatically.Proportional integral derivative(PID)controllers are typically used in AVR systems to regulate voltage.Although advanced PID tuning methods have been proposed,the actual voltage response differs from the theoretical predictions due to modeling errors and system uncertainties.This requires continuous fine tuning of the PID parameters.However,manual adjustment of these parameters can compromise the stability and robustness of the AVR system.This study focuses on the online self-tuning of PID controllers called indirect design approach-2(IDA-2)in AVR systems while preserving robustness.In particular,we indirectly tune the PID controller by shifting the frequency response.The new PID parameters depend on the frequency-shifting constant and the previously optimized PID parameters.Adjusting the frequency-shifting constant modifies all the PID parameters simultaneously,thereby improving the control performance and robustness.We evaluate the robustness of the proposed online PID tuning method by comparing the gain margins(GMs)and phase margins(PMs)with previously optimized PID parameters during parameter uncertainties.The proposed method is further evaluated in terms of disturbance rejection,measurement noise,and frequency response analysis during parameter uncertainty calculations against existing methods.Simulations show that the proposed method significantly improves the robustness of the controller in the AVR system.In summary,online self-tuning enables automated PID parameter adjustment in an AVR system,while maintaining stability and robustness. 展开更多
关键词 PID controller tuning AVR system Indirect design approach(IDA) Frequency-shifting Robust control
下载PDF
Finite-Time Stabilization for Constrained Discrete-time Systems by Using Model Predictive Control
16
作者 Bing Zhu Xiaozhuoer Yuan +1 位作者 Li Dai Zhiwen Qiang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1656-1666,共11页
In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guar... In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guarantees the finite-time convergence property by assigning the control horizon equal to the dimension of the overall system, and only penalizing the terminal cost in the optimization, where the stage costs are not penalized explicitly. A terminal inequality constraint is added to guarantee the feasibility and stability of the closed-loop system.Initial feasibility can be improved via augmentation. The finite-time convergence of the proposed MPC is proved theoretically,and is supported by simulation examples. 展开更多
关键词 CONSTRAINTS deadbeat control finite-time stabilization model predictive control(MPC)
下载PDF
Vision based intelligent traffic light management system using Faster R‐CNN
17
作者 Syed Konain Abbas Muhammad Usman Ghani Khan +4 位作者 Jia Zhu Raheem Sarwar Naif R.Aljohani Ibrahim A.Hameed Muhammad Umair Hassan 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期932-947,共16页
Transportation systems primarily depend on vehicular flow on roads. Developed coun-tries have shifted towards automated signal control, which manages and updates signal synchronisation automatically. In contrast, traf... Transportation systems primarily depend on vehicular flow on roads. Developed coun-tries have shifted towards automated signal control, which manages and updates signal synchronisation automatically. In contrast, traffic in underdeveloped countries is mainly governed by manual traffic light systems. These existing manual systems lead to numerous issues, wasting substantial resources such as time, energy, and fuel, as they cannot make real‐time decisions. In this work, we propose an algorithm to determine traffic signal durations based on real‐time vehicle density, obtained from live closed circuit television camera feeds adjacent to traffic signals. The algorithm automates the traffic light system, making decisions based on vehicle density and employing Faster R‐CNN for vehicle detection. Additionally, we have created a local dataset from live streams of Punjab Safe City cameras in collaboration with the local police authority. The proposed algorithm achieves a class accuracy of 96.6% and a vehicle detection accuracy of 95.7%. Across both day and night modes, our proposed method maintains an average precision, recall, F1 score, and vehicle detection accuracy of 0.94, 0.98, 0.96 and 0.95, respectively. Our proposed work surpasses all evaluation metrics compared to state‐of‐the‐art methodologies. 展开更多
关键词 access control artificial intelligence computer vision intelligent control
下载PDF
Dynamic Constraint-Driven Event-Triggered Control of Strict-Feedback Systems Without Max/Min Values on Irregular Constraints
18
作者 Zhuwu Shao Yujuan Wang +1 位作者 Zeqiang Li Yongduan Song 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期569-580,共12页
This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregu... This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregular constraints are considered and a constraints switching mechanism(CSM)is introduced to circumvent the difficulties arising from irregular output constraints.Based on the CSM,a new class of generalized barrier functions are constructed,which allows the control results to be independent of the maximum and minimum values(MMVs)of constraints and thus extends the existing results.Finally,we proposed a novel dynamic constraint-driven event-triggered strategy(DCDETS),under which the stress on signal transmission is reduced greatly and no constraints are violated by making a dynamic trade-off among system state,external constraints,and inter-execution intervals.It is proved that the system output is driven to close to the reference trajectory and the semi-global stability is guaranteed under the proposed control scheme,regardless of the external irregular output constraints.Simulation also verifies the effectiveness and benefits of the proposed method. 展开更多
关键词 Adaptive control dynamic constraint-driven event-triggered control irregular output constraints nonlinear strict-feed-back systems
下载PDF
Primary frequency control considering communication delay for grid-connected offshore wind power systems
19
作者 Xueping Pan Qijie Xu +5 位作者 Tao Xu Jinpeng Guo Xiaorong Sun Yuquan Chen Qiang Li Wei Liang 《Global Energy Interconnection》 EI CSCD 2024年第3期241-253,共13页
Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary freque... Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary frequency control.This causes a deterioration in the performance of the primary frequency control and,in some cases,may even result in frequency instability within the power system.Therefore,a frequency response model that incorporates communication delays was established for power systems that integrate offshore wind power.The Padéapproximation was used to model the time delays,and a linearized frequency response model of the power system was derived to investigate the frequency stability under different time delays.The influences of the wind power proportion and frequency control parameters on the system frequency stability were explored.In addition,a Smith delay compensation control strategy was devised to mitigate the effects of communication delays on the system frequency dynamics.Finally,a power system incorporating offshore wind power was constructed using the MATLAB/Simulink platform.The simulation results demonstrate the effectiveness and robustness of the proposed delay compensation control strategy. 展开更多
关键词 Offshore wind power Primary frequency control Time delay Padéapproximation Time-delay compensation control
下载PDF
Adaptive Optimal Output Regulation of Interconnected Singularly Perturbed Systems With Application to Power Systems
20
作者 Jianguo Zhao Chunyu Yang +2 位作者 Weinan Gao Linna Zhou Xiaomin Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期595-607,共13页
This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the sl... This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the slow and fast characteristics among system states,the interconnected SPS is decomposed into the slow time-scale dynamics and the fast timescale dynamics through singular perturbation theory.For the fast time-scale dynamics with interconnections,we devise a decentralized optimal control strategy by selecting appropriate weight matrices in the cost function.For the slow time-scale dynamics with unknown system parameters,an off-policy RL algorithm with convergence guarantee is given to learn the optimal control strategy in terms of measurement data.By combining the slow and fast controllers,we establish the composite decentralized adaptive optimal output regulator,and rigorously analyze the stability and optimality of the closed-loop system.The proposed decomposition design not only bypasses the numerical stiffness but also alleviates the high-dimensionality.The efficacy of the proposed methodology is validated by a load-frequency control application of a two-area power system. 展开更多
关键词 Adaptive optimal control decentralized control output regulation reinforcement learning(RL) singularly perturbed systems(SPSs)
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部