A novel hard material with various (W0.5Al0.5)C grain shapes was successfully prepared through mechanical alloying and in-situ high-pressure sintering process. X-ray diffraction apparatus and scanning electron micro...A novel hard material with various (W0.5Al0.5)C grain shapes was successfully prepared through mechanical alloying and in-situ high-pressure sintering process. X-ray diffraction apparatus and scanning electron microscopy were used to characterize the phase and the microstructures of the samples. The novel hard materials with "fibrous", "rounded" and "plate-like" grains, which do not contain sharp edges, have the improved mechanical properties. The bulk boundless (W0.5Al0.5)C hard material with various (W0.5Al0.5)C grain shapes possesses good mechanical properties and light weight. The formation mechanism for the non-equilibrium (W0.5Al0.5)C grains during in-situ high-pressure sintering is also discussed.展开更多
基金supported by the National Natural Science Foundation of China(No.50371080)the Project of Science and Technology Development Program(No.20030508) of Jilin Province, Chinathe financial support from the Alexander von Humboldt Foundation
文摘A novel hard material with various (W0.5Al0.5)C grain shapes was successfully prepared through mechanical alloying and in-situ high-pressure sintering process. X-ray diffraction apparatus and scanning electron microscopy were used to characterize the phase and the microstructures of the samples. The novel hard materials with "fibrous", "rounded" and "plate-like" grains, which do not contain sharp edges, have the improved mechanical properties. The bulk boundless (W0.5Al0.5)C hard material with various (W0.5Al0.5)C grain shapes possesses good mechanical properties and light weight. The formation mechanism for the non-equilibrium (W0.5Al0.5)C grains during in-situ high-pressure sintering is also discussed.