Pt-based nanoframes represent a class of promising catalysts towards oxygen reduction reaction. Herein, we, for the first time, successfully prepared Pt-Pd octahedral nanoframes with ultrathin ridges less than 2 nm in...Pt-based nanoframes represent a class of promising catalysts towards oxygen reduction reaction. Herein, we, for the first time, successfully prepared Pt-Pd octahedral nanoframes with ultrathin ridges less than 2 nm in thickness. The Pt-Pd octahedral nanoframes were obtained through site-selected deposition of Pt atoms onto the edge sites of Pd octahedral seeds, followed by selective removal of the Pd octahedral cores via chemical etching. Due to that a combination of three-dimensional opens geometrical structure and Pt-skin surface compositional structure, the Pt-Pd octahedral nanoframes/C catalyst shows a mass activity of 1.15 A/mgPt towards oxygen reduction reaction, 5.8 times enhancement in mass activity relative to commercial Pt/C catalyst (0.20 A/mgPt). Moreover, even after 8000 cycles of accelerated durability test, the Pt-Pd octahedral nanoframes/C catalyst still exhibits a mass activity which is more than three times higher than that of pristine Pt/C catalyst.展开更多
The MnSe(x = 1,2) nanoparticles were synthesized under hydrothermal condition,by reaction of the reduced selenium and Mnion in the presence of hydrazine and acetic acid.By precisely controlling the pH value of the sol...The MnSe(x = 1,2) nanoparticles were synthesized under hydrothermal condition,by reaction of the reduced selenium and Mnion in the presence of hydrazine and acetic acid.By precisely controlling the pH value of the solution,a series of MnSeparticles were synthesized.The structure and morphology of as-prepared particles were examined with x-ray diffractometer(XRD),transmission electron microscopy(TEM),and scanning electron microscopy(SEM).The average sizes of as-prepared particles varied from nanoscale to microscale with pH value increase.Furthermore,the nucleation and growth mechanism associated with pH values were discussed,which can be applied to the hydrothermal synthesis of metal chalcogenide in general.Finally,the optical and magnetic properties of as-prepared particles were measured.All as-made particles exhibit a ferromagnetic behavior with low coercivity and remanence at room temperature.展开更多
CoO nanostructures with tunable morphology and size have been prepared via a simple one-pot solvothermal synthesis. The as-prepared nanoparticles were fully characterized using X-ray diffraction(XRD), transmission e...CoO nanostructures with tunable morphology and size have been prepared via a simple one-pot solvothermal synthesis. The as-prepared nanoparticles were fully characterized using X-ray diffraction(XRD), transmission electron microscopy(TEM), field-emission scanning electron microscope(FESEM), etc. The morphology and size of the product can be easily controlled by adjusting the raw materials added. Reaction time and the solvent ratio also play important roles in the synthesis of octahedral nanostructures. The magnetic property of the as-prepared samples was also investigated.展开更多
Polypeptides are one kind of promising biodegradable and biocompatible biomedical polymers with the structural units of various a-amino acids.Polypeptides were first polymerized by the ring-opening polymerization(ROP)...Polypeptides are one kind of promising biodegradable and biocompatible biomedical polymers with the structural units of various a-amino acids.Polypeptides were first polymerized by the ring-opening polymerization(ROP)of α-amino acid N-carboxyanhydrides(NCAs)by Leuchs and Hermann in 1906.In the past decades,several effective strategies,including the selection of initiators,the adjustment of reaction conditions,and the introduction of catalysts,have been reported to improve the controllability of the ROP of various a-amino acid NCAs to synthesize different polypeptides with precise chemical structures and low polydispersity indexes.In this Review,the strategies,mechanisms,challenges,and opportunities for controlled synthesis of polypeptides by the ROP of differentα-amino acid NCAs have been declared.展开更多
Size tunable cobalt hollow nanospheres with high catalytic activity for the ammonia borane(AB) hydrolysis have been synthesized by using the solvothermal method. The complexation between Co2+and ethylenediamine is obs...Size tunable cobalt hollow nanospheres with high catalytic activity for the ammonia borane(AB) hydrolysis have been synthesized by using the solvothermal method. The complexation between Co2+and ethylenediamine is observed to be critical for the formation of the cobalt hollow nanospherical structure.The morphology of the cobalt hollow nanospheres can be regulated by adjusting the original ethylenediamine/ethanol volume ratio, reaction time and temperature. Impressively, the magnetic property study reveals that the coercivity of the as-synthesized cobalt hollow nanospheres is much enhanced compared with that of bulk cobalt materials. Meanwhile, Co/Pt bimetal hollow nanospheres(Co Pt HS) and graphene-cobalt hollow composite nanospheres(Co HS-r GO) have also been explored. In comparison with the cobalt hollow nanospheres, both the Co Pt HS and Co HS-r GO show higher catalytic activities and better repeatability for the catalytic hydrogen generation from AB hydrolysis. Moreover, it is noted that these catalysts could be recycled by using the magnetic separation method.展开更多
High quality NaYF4:Eu3+ luminescent materials were successfully synthesized via a facile template technique by hydrothermal method.The samples were characterized by X-ray powder diffraction(XRD),transmission electron ...High quality NaYF4:Eu3+ luminescent materials were successfully synthesized via a facile template technique by hydrothermal method.The samples were characterized by X-ray powder diffraction(XRD),transmission electron microscopy(TEM) and fluorescence spectroscopy(FS).The incorporating of Eu3+ ions into NaYF4 crystal lattice influenced the symmetry types of NaYF4 crystals,resulting in phase transformation of NaYF4 crystals between α and β phase.The pure hexagonal phase of branched NaYF4:Eu3+ was obtained as the Eu3+ concentration reached 15 mol.%.In addition,the luminescence color was tuned by changing the doping concentration of Eu3+ ions.展开更多
Gear-shape CeO2 microstructures have been synthesized via a facile hydrothermal method with Ce(NO3)3-6H20 as the cerium source, NHaHCO3 as both the precipitator and the carbon source, and cetyltrimethyl ammonium bro...Gear-shape CeO2 microstructures have been synthesized via a facile hydrothermal method with Ce(NO3)3-6H20 as the cerium source, NHaHCO3 as both the precipitator and the carbon source, and cetyltrimethyl ammonium bromide (CTAB) as the surfactant. X-ray diffraction (XRD) inferred that the synthesized CeO2 microstructures exhibited a fluorite structure. The band gap (Eg) of CeO2 samples is larger than that of bulk. X-ray photoelectron spectroscopy (XPS) showed that there are plenty or Ce3+ ions and oxygen vacancies at the surface of CeO2 samples. All the synthesized CeO2 samples exhibited the room temperature ferromagnetism, and the saturation magnetization increases with the increases of lattice parameter and Eg. The room temperature ferromagnetism mechanism of gear-shape CeO2 is mainly attributed to the influence Ce3+ ions.展开更多
Controlled synthesis is central to obtaining polymers with accurate structures and excellent performances.Recent research in the controlled synthesis of polymers has focused on optimizing monomers,initiation systems,a...Controlled synthesis is central to obtaining polymers with accurate structures and excellent performances.Recent research in the controlled synthesis of polymers has focused on optimizing monomers,initiation systems,and reaction conditions.The satisfactory sequence,topological structure,and dispersity have been achieved to satisfy the growing demand for functional polymers.This re-view summarizes the selection of monomers of various types and structures,the innovation of initiation systems,and the optimiza-tion of reaction conditions in the controlled synthesis of polymers and discusses their challenges and opportunities.展开更多
Preparing SnO2 with hierarchical micro/nano structures by hydrothermal, coordination, templating and electrochemical deposition methods and their mechanisms are investigated. The result shows that the echinus-like SnO...Preparing SnO2 with hierarchical micro/nano structures by hydrothermal, coordination, templating and electrochemical deposition methods and their mechanisms are investigated. The result shows that the echinus-like SnO2 prepared by Method 1 is a typical Ostwald mechanism that develops from internally to externally. The cabbage-like SnO2 by Method 2 is produced with oxalic acid as complexing agent to set-up precursor of SnO2, and then precursors are bocked around the body that is around the body being bocked. The nest-like SnO2 by Method 3 is controlled by citric acid as coordinator for the nucleation as well as the grow rate and setup process. Spongy-like SnO2 by Method 4 is produced using PST as template, PST is be infiltered into SnO2 precursor by gravity and capillary and treated thermally to form a multiporous structure. The petal-like SnO2 by Method 5 is formed with crystal deposition emergence due to oxidation-reduction reactions of two electrodes in an electric field. XRD analyses shows that the five results are all pure phase SnO2. It provides basic data for SnOE industrial application.展开更多
Different solvothermal reactions of ZnC2O_(4)with oxalic acid(H_(2)ox)and 1,2,4-triazole(Htrz)successfully gave a new quaternary(NJTU-Bai83,NJTU-Bai=Nanjing Tech University Bai's group)and a new quinary(NJTU-Bai84...Different solvothermal reactions of ZnC2O_(4)with oxalic acid(H_(2)ox)and 1,2,4-triazole(Htrz)successfully gave a new quaternary(NJTU-Bai83,NJTU-Bai=Nanjing Tech University Bai's group)and a new quinary(NJTU-Bai84)anionic metal-organic frameworks(MOFs),where NJTU-Bai83=(Me_(2)NH_(2))2[Zn_(3)(trz)_(2)(ox)_(3)]·2H_(2)O and NJTU-Bai84=(Me_(2)NH_(2))[Zn_(3)(trz)_(3)(ox)_(2)]·H_(2)O,respectively.With the[Zn_(2)(ox)4(trz)_(2)]secondary building unit(SBU)in NJTU-Bai83 replaced by the[Zn_(3)(ox)_(2)(trz)_(6)]and planar[Zn(ox)_(2)(trz)_(2)]ones in NJTU-Bai84,2D supramolecular building layers(SBLs)are changed from the A-layer and B-layer to another A-layer,while pillars are transformed from the tetrahedral[Zn(ox)_(2)(trz)_(2)]SBU to the irregular tetrahedral[Zn(ox)_(2)(trz)_(2)]and planar[Zn(ox)_(2)(trz)_(2)]SBUs.Thus,cdq-topological quaternary NJTU-Bai83 is tuned to(4,4,8)-c new topological quinary NJTU-Bai84.Two MOFs were well characterized by powder X-ray diffraction,thermogravimetric analysis,elemental analysis,etc.CCDC:2351819,NJTU-Bai83;2351820,NJTU-Bai84.展开更多
The use of living, alkyllithium-initiated anionic polymerization to prepare chain-end functionalized polymers and heteroarm, star-branched polymers is discussed. The scope and limitations of specific termination react...The use of living, alkyllithium-initiated anionic polymerization to prepare chain-end functionalized polymers and heteroarm, star-branched polymers is discussed. The scope and limitations of specific termination reactions with a variety of electrophilic species are illustrated for carbonation, hydroxyethylation, amination, and sulfonation. The methodology of using substituted 1,1-diphenylethylenes to provide a general, quantitative functionalization procedure is outlined and illustrated with examples of amine and phenol end-functionalization. A methodology is described for the synthesis of functionalized, star-branched copolymers with compositionally heterogeneous arms of controlled molecular weight and narrow molecular weight distribution using 1, 3-bis(1-pbenylethenyl) benzene.展开更多
In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterpart...In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.展开更多
The surface-enhanced Raman scattering(SERS) optical fiber probes were successfully prepared by self-assembling on polyelectrolyte multilayers. Gold nanorods(Au NRs) were used as SERS enhancement material to give excel...The surface-enhanced Raman scattering(SERS) optical fiber probes were successfully prepared by self-assembling on polyelectrolyte multilayers. Gold nanorods(Au NRs) were used as SERS enhancement material to give excellent biological affinity and stability to the SERS optical fiber probes. Au NRs were synthesized by seed growth method. The synergistic effect between AgNO_(3) and surfactant was investigated, and the highest yield was found when AgNO_(3) was 500 uL. Meanwhile, different SERS optical fiber probes were obtained by selecting silane coupling agent, polyelectrolyte multilayer and graphene oxide(GO) to treat quartz fiber. It was found that the SERS optical fiber probes obtained by the self-assembled on polyelectrolyte multilayers method performed better than those by other methods. In addition, Mapping was combined with finite element simulation to analyze the electromagnetic field distribution at the fiber end face.The electromagnetic field distribution of Au NRs was investigated, the difference of electromagnetic field intensity around the Au NRs with different arrangements was compared, the strongest signal was obtained when the Au NRs were head-to-head. Finally, sensitivity of the optimized SERS optical fiber probes could reach 10^(-9)mol/L, with excellent stability and repeatability.展开更多
This article reviews recent progresses in growth mechanism, synthesis, and applications of zinc oxide nano-materials (mainly focusing on one-dimensional (1D) nanomaterials). In the first part of this article, we b...This article reviews recent progresses in growth mechanism, synthesis, and applications of zinc oxide nano-materials (mainly focusing on one-dimensional (1D) nanomaterials). In the first part of this article, we briefly introduce the importance, the synthesis methods and growth mechanisms, the properties and applications of ZnO 1D nanomaterials. In the second part of this article, the growth mechanisms of ZnO 1D nanomaterials will be discussed in detail in the framework of vapor-liquid-solid (VLS), vapor-solid (VS), and aqueous solution growth (ASG) approaches. Both qualitative and quantitative information will be provided to show how a controlled synthesis of ZnO 1D nanomaterials can be achieved. In the third part of this article, we present recent progresses in our group for the synthesis of ZnO 1D nanomaterials, and the results from other groups will only be mentioned briefly. Especially, experiment designing according to theories will be elaborated to demonstrate the concept of controlled synthesis. In the fourth part of this article, the properties and potential applications of ZnO 1D nanomaterials will be treated. Finally, a summary part will be presented in the fifth section. The future trend of research for ZnO 1D nanomaterials will be pointed out and key issues to be solved will be proposed.展开更多
Designing a highly active-and stable non-noble metal bifunctional oxygen catalyst for rechargeable Znair battery remains a great challenge. Herein, we develop a facile and melamine-assisted-pyrolysis(MAP)strategy for ...Designing a highly active-and stable non-noble metal bifunctional oxygen catalyst for rechargeable Znair battery remains a great challenge. Herein, we develop a facile and melamine-assisted-pyrolysis(MAP)strategy for the synthesis of core–shell Co-based electrocatalysts@N-doped carbon nanotubes(Co@CNTs)derived from metal–organic frameworks. The Co@CNTs exhibited excellent bifunctional electrocatalytic performance for both oxygen evolution and reduction. DFT calculations demonstrated that the Gibbs free energy of the rate-determining step was small enough to improve ORR activities. As a result, a Zn-air battery assembled with Co@CNTs proves a lager power density, low voltage gap between charge–discharge and excellent stability. Thus, this work offers a facile strategy to realize the synthesis of non-noble metal electrocatalyst for Zn-air battery materials with high electrochemical performance.展开更多
Doping effects of manganese (Mn) on catalytic performance and structure evolution of NiMgO catalysts for synthesis of multi-walled carbon nanotubes (MWCNTs) from methane were investigated for the first time. Addit...Doping effects of manganese (Mn) on catalytic performance and structure evolution of NiMgO catalysts for synthesis of multi-walled carbon nanotubes (MWCNTs) from methane were investigated for the first time. Addition of Mn in NiMgO catalyst can greatly improve the MWCNTs yield. Mno.2NiMgO catalyst among the tested ones gives the highest MWCNTs yield as 2244%, which is two times higher than that of the catalyst without Mn. The structure evolution, reduction behaviors and surface chemical properties of MnNiMgO catalysts with various Mn contents were studied in detail. It was found that the stable solid solution of NiMgO2 formed in NiMgO catalyst was disturbed by the addition of Mn. Instead, another solid solution of MnMg608 is formed. More amount of Ni can be reduced and dispersed on the catalyst surface to be acted as active sites. Importantly, the changes of Ni content on the surface are correlated with the Ni particle size and the outer diameter of MWCNTs, suggesting the controllable synthesis of MWCNTs over MnNiMgO catalysts.展开更多
This paper is concerned with the robust control synthesis of autonomous underwater vehicle (AUV) for general path following maneuvers. First, we present maneuvering kinematics and vehicle dynamics in a unified frame...This paper is concerned with the robust control synthesis of autonomous underwater vehicle (AUV) for general path following maneuvers. First, we present maneuvering kinematics and vehicle dynamics in a unified framework. Based on H∞ loop-shaping procedure, the 2-DOF autopilot controller has been presented to enhance stability and path tracking. By use of model reduction, the high-order control system is reduced to one with reasonable order, and further the scaled low-order controller has been analyzed in both the frequency and the time domains. Finally, it is shown that the autopilot control system provides robust performance and stability against prescribed levels of uncertainty.展开更多
Controllable design and synthesis of catalysts with the target active sites are extremely important for their applications such as for the oxygen reduction reaction(ORR)in fuel cells.However,the controllably synthesiz...Controllable design and synthesis of catalysts with the target active sites are extremely important for their applications such as for the oxygen reduction reaction(ORR)in fuel cells.However,the controllably synthesizing electrocatalysts with a single type of active site still remains a grand challenge.In this study,we developed a facile and scalable method for fabricating highly efficient ORR electrocatalysts with sole atomic Fe-N4 species as the active site.Herein,the use of cost-effective highly porous carbon as the support not only could avoid the aggregation of the atomic Fe species but also a feasible approach to reduce the catalyst cost.The obtained atomic Fe-N4 in activated carbon(aFe@AC)shows excellent ORR activity.Its half-wave potential is 59 mV more negative but 47 mV more positive than that of the commercial Pt/C in acidic and alkaline electrolytes,respectively.The full cell performance test results show that the aFe@AC sample is a promising candidate for direct methanol fuel cells.This study provides a general method to prepare catalysts with a certain type of active site and definite numbers.展开更多
Photocatalytic water splitting has increasingly attracted attention as one of the most useful methods of converting solar energy into chemical fuel.However,the undesirable reverse reaction significantly limits the enh...Photocatalytic water splitting has increasingly attracted attention as one of the most useful methods of converting solar energy into chemical fuel.However,the undesirable reverse reaction significantly limits the enhancement of efficiency.Herein,we fabricated an Au nanorods/TiO2 nanodumbbells structure photocatalyst(Au NRs/TiO2 NDs)via a facile synthetic strategy,which has spatially separated oxidation and reduction reaction zones.Owing to the unique structure,the charge separation of these photocatalysts can be significantly improved and the reverse reaction can be efficiently inhibited.The photogenerated electrons were injected from the TiO2 to the Au NRs,and a positively charged TiO2 region and negatively charged Au region were formed under UV irradiation.An enhanced hydrogen production performance was obtained compared with that seen in normal Au-TiO2 heterostructure.Under optimized conditions,the H2-production rate can reach up to 60,264μmol/g/h,about six times higher than previously reported Au/TiO2 photocatalysts.Besides this,our work also demonstrates the key factors of precise synthesis of the Au NRs/TiO2 NDs structure,which provides a new perspective and experience for the design of similar catalysts.展开更多
Two-dimensional(2D)hexagonal boron nitride(hBN),due to its extraordinary thermal,chemical,and optical properties,has arisen as an enticing material for the research community to explore for various applications,includ...Two-dimensional(2D)hexagonal boron nitride(hBN),due to its extraordinary thermal,chemical,and optical properties,has arisen as an enticing material for the research community to explore for various applications,including the use of site defects in hBN as single photon emitters(SPEs).In this review,we systematically summarize recent advanced strategies towards the controllable synthesis of 2D hBN using chemical vapor deposition,towards a full control of the domain size,orientation,morphology,layer number,and stacking order,etc.Moreover,we review the underlying mechanisms for single photon emission(SPE)in hBN and methods to selectively generate and tune the SPEs.Defects(e.g.,carbon substituted defects)are discussed for the potential use as emission sites.We finally give an outlook of future challenges and opportunities on desirable hBN synthesis and further investigation of SPEs in hBN,targeting to utilize hBN as single photon emitters in an industrial scale.展开更多
基金This work is supported by Collaborative Innovation Center of Suzhou Nano Science and Technology, Ministry of Science and Technology of China (No.2014CB932700), the National Natural Science Foundation of China (No.21603208, No.21573206, and No.51371164), the China Postdoctoral Science Foundation (No.2015M580536, No.2016T90569), Key Research Program of Frontier Sciences, CAS (QYZDBSSW- SLH017), Strategic Priority Research Program B of the CAS (No.XDB01020000), Hefei Science Center, CAS (No.2015HSC-UP016), and Fundamental Research Funds for the Central Universities.
文摘Pt-based nanoframes represent a class of promising catalysts towards oxygen reduction reaction. Herein, we, for the first time, successfully prepared Pt-Pd octahedral nanoframes with ultrathin ridges less than 2 nm in thickness. The Pt-Pd octahedral nanoframes were obtained through site-selected deposition of Pt atoms onto the edge sites of Pd octahedral seeds, followed by selective removal of the Pd octahedral cores via chemical etching. Due to that a combination of three-dimensional opens geometrical structure and Pt-skin surface compositional structure, the Pt-Pd octahedral nanoframes/C catalyst shows a mass activity of 1.15 A/mgPt towards oxygen reduction reaction, 5.8 times enhancement in mass activity relative to commercial Pt/C catalyst (0.20 A/mgPt). Moreover, even after 8000 cycles of accelerated durability test, the Pt-Pd octahedral nanoframes/C catalyst still exhibits a mass activity which is more than three times higher than that of pristine Pt/C catalyst.
基金supported by the National Basic Research Program of China(Grant No.2015CB921502)the National Natural Science Foundation of China(Grant Nos.11474184 and 11627805)+1 种基金the 111 Project(Grant No.B13029)the Fundamental Research Funds of Shandong University,China
文摘The MnSe(x = 1,2) nanoparticles were synthesized under hydrothermal condition,by reaction of the reduced selenium and Mnion in the presence of hydrazine and acetic acid.By precisely controlling the pH value of the solution,a series of MnSeparticles were synthesized.The structure and morphology of as-prepared particles were examined with x-ray diffractometer(XRD),transmission electron microscopy(TEM),and scanning electron microscopy(SEM).The average sizes of as-prepared particles varied from nanoscale to microscale with pH value increase.Furthermore,the nucleation and growth mechanism associated with pH values were discussed,which can be applied to the hydrothermal synthesis of metal chalcogenide in general.Finally,the optical and magnetic properties of as-prepared particles were measured.All as-made particles exhibit a ferromagnetic behavior with low coercivity and remanence at room temperature.
基金Supported by the National Natural Science Foundation of China(No.21201035,No.81371343)the Scientific and Technological Foundation of Fujian Province(No.JK2013003)the Natural Science Foundation of Fujian Province(No.2012J01204)
文摘CoO nanostructures with tunable morphology and size have been prepared via a simple one-pot solvothermal synthesis. The as-prepared nanoparticles were fully characterized using X-ray diffraction(XRD), transmission electron microscopy(TEM), field-emission scanning electron microscope(FESEM), etc. The morphology and size of the product can be easily controlled by adjusting the raw materials added. Reaction time and the solvent ratio also play important roles in the synthesis of octahedral nanostructures. The magnetic property of the as-prepared samples was also investigated.
基金the financial support from the National Natural Science Foundation of China(Nos.51973216,51873207,51803006,51833010,51673190 and 51520105004)the Science and Technology Development Program of Jilin Province(No.20190201068JC)+2 种基金the National Key Research and Development Program of China(No.2016YFC1100701)the Youth Talents Promotion Project of Jilin Province(No.181909)the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2019005)。
文摘Polypeptides are one kind of promising biodegradable and biocompatible biomedical polymers with the structural units of various a-amino acids.Polypeptides were first polymerized by the ring-opening polymerization(ROP)of α-amino acid N-carboxyanhydrides(NCAs)by Leuchs and Hermann in 1906.In the past decades,several effective strategies,including the selection of initiators,the adjustment of reaction conditions,and the introduction of catalysts,have been reported to improve the controllability of the ROP of various a-amino acid NCAs to synthesize different polypeptides with precise chemical structures and low polydispersity indexes.In this Review,the strategies,mechanisms,challenges,and opportunities for controlled synthesis of polypeptides by the ROP of differentα-amino acid NCAs have been declared.
基金supported by the National Natural Science Foundation of China(21271021,51472025,21671016)Beijing Nova Programme Interdisciplinary Cooperation Project
文摘Size tunable cobalt hollow nanospheres with high catalytic activity for the ammonia borane(AB) hydrolysis have been synthesized by using the solvothermal method. The complexation between Co2+and ethylenediamine is observed to be critical for the formation of the cobalt hollow nanospherical structure.The morphology of the cobalt hollow nanospheres can be regulated by adjusting the original ethylenediamine/ethanol volume ratio, reaction time and temperature. Impressively, the magnetic property study reveals that the coercivity of the as-synthesized cobalt hollow nanospheres is much enhanced compared with that of bulk cobalt materials. Meanwhile, Co/Pt bimetal hollow nanospheres(Co Pt HS) and graphene-cobalt hollow composite nanospheres(Co HS-r GO) have also been explored. In comparison with the cobalt hollow nanospheres, both the Co Pt HS and Co HS-r GO show higher catalytic activities and better repeatability for the catalytic hydrogen generation from AB hydrolysis. Moreover, it is noted that these catalysts could be recycled by using the magnetic separation method.
基金Project supported by the China Postdoctoral Science Foundation (20080430216)the Science Technology Project of Zhejiang Province (2008C21162)
文摘High quality NaYF4:Eu3+ luminescent materials were successfully synthesized via a facile template technique by hydrothermal method.The samples were characterized by X-ray powder diffraction(XRD),transmission electron microscopy(TEM) and fluorescence spectroscopy(FS).The incorporating of Eu3+ ions into NaYF4 crystal lattice influenced the symmetry types of NaYF4 crystals,resulting in phase transformation of NaYF4 crystals between α and β phase.The pure hexagonal phase of branched NaYF4:Eu3+ was obtained as the Eu3+ concentration reached 15 mol.%.In addition,the luminescence color was tuned by changing the doping concentration of Eu3+ ions.
基金financially supported by the Anhui Provincial Natural Science Foundation (No. 1508085SME219)
文摘Gear-shape CeO2 microstructures have been synthesized via a facile hydrothermal method with Ce(NO3)3-6H20 as the cerium source, NHaHCO3 as both the precipitator and the carbon source, and cetyltrimethyl ammonium bromide (CTAB) as the surfactant. X-ray diffraction (XRD) inferred that the synthesized CeO2 microstructures exhibited a fluorite structure. The band gap (Eg) of CeO2 samples is larger than that of bulk. X-ray photoelectron spectroscopy (XPS) showed that there are plenty or Ce3+ ions and oxygen vacancies at the surface of CeO2 samples. All the synthesized CeO2 samples exhibited the room temperature ferromagnetism, and the saturation magnetization increases with the increases of lattice parameter and Eg. The room temperature ferromagnetism mechanism of gear-shape CeO2 is mainly attributed to the influence Ce3+ ions.
基金supported by the National Key Research and Development Program(Nos.2022YFC2603500,2021YFC2400600)the National Natural Science Foundation of China(Nos.52273158,U21A2099,52022095,52073280,51973216)+2 种基金the Science and Technology Development Program of Jjilin Province(Nos.20220204018YY,20210509005RQ,20210504001GH,20200404182YY)the Special Project for City-Academy Scientific and Technological Innovation Cooperation of Changchun(No.21SH14)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2019230).
文摘Controlled synthesis is central to obtaining polymers with accurate structures and excellent performances.Recent research in the controlled synthesis of polymers has focused on optimizing monomers,initiation systems,and reaction conditions.The satisfactory sequence,topological structure,and dispersity have been achieved to satisfy the growing demand for functional polymers.This re-view summarizes the selection of monomers of various types and structures,the innovation of initiation systems,and the optimiza-tion of reaction conditions in the controlled synthesis of polymers and discusses their challenges and opportunities.
基金Supported by fund of the Excellent Science&Technology Innovate Team Program for Young and Middle-aged Talents in University of Hubei Province(T201225)Hubei Provincial Key Laboratory of Plant Anti-Cancer Active Substance Purification and Application,The Second Excellent Teacher Team of Hubei University of Education(2012K203)
文摘Preparing SnO2 with hierarchical micro/nano structures by hydrothermal, coordination, templating and electrochemical deposition methods and their mechanisms are investigated. The result shows that the echinus-like SnO2 prepared by Method 1 is a typical Ostwald mechanism that develops from internally to externally. The cabbage-like SnO2 by Method 2 is produced with oxalic acid as complexing agent to set-up precursor of SnO2, and then precursors are bocked around the body that is around the body being bocked. The nest-like SnO2 by Method 3 is controlled by citric acid as coordinator for the nucleation as well as the grow rate and setup process. Spongy-like SnO2 by Method 4 is produced using PST as template, PST is be infiltered into SnO2 precursor by gravity and capillary and treated thermally to form a multiporous structure. The petal-like SnO2 by Method 5 is formed with crystal deposition emergence due to oxidation-reduction reactions of two electrodes in an electric field. XRD analyses shows that the five results are all pure phase SnO2. It provides basic data for SnOE industrial application.
文摘Different solvothermal reactions of ZnC2O_(4)with oxalic acid(H_(2)ox)and 1,2,4-triazole(Htrz)successfully gave a new quaternary(NJTU-Bai83,NJTU-Bai=Nanjing Tech University Bai's group)and a new quinary(NJTU-Bai84)anionic metal-organic frameworks(MOFs),where NJTU-Bai83=(Me_(2)NH_(2))2[Zn_(3)(trz)_(2)(ox)_(3)]·2H_(2)O and NJTU-Bai84=(Me_(2)NH_(2))[Zn_(3)(trz)_(3)(ox)_(2)]·H_(2)O,respectively.With the[Zn_(2)(ox)4(trz)_(2)]secondary building unit(SBU)in NJTU-Bai83 replaced by the[Zn_(3)(ox)_(2)(trz)_(6)]and planar[Zn(ox)_(2)(trz)_(2)]ones in NJTU-Bai84,2D supramolecular building layers(SBLs)are changed from the A-layer and B-layer to another A-layer,while pillars are transformed from the tetrahedral[Zn(ox)_(2)(trz)_(2)]SBU to the irregular tetrahedral[Zn(ox)_(2)(trz)_(2)]and planar[Zn(ox)_(2)(trz)_(2)]SBUs.Thus,cdq-topological quaternary NJTU-Bai83 is tuned to(4,4,8)-c new topological quinary NJTU-Bai84.Two MOFs were well characterized by powder X-ray diffraction,thermogravimetric analysis,elemental analysis,etc.CCDC:2351819,NJTU-Bai83;2351820,NJTU-Bai84.
文摘The use of living, alkyllithium-initiated anionic polymerization to prepare chain-end functionalized polymers and heteroarm, star-branched polymers is discussed. The scope and limitations of specific termination reactions with a variety of electrophilic species are illustrated for carbonation, hydroxyethylation, amination, and sulfonation. The methodology of using substituted 1,1-diphenylethylenes to provide a general, quantitative functionalization procedure is outlined and illustrated with examples of amine and phenol end-functionalization. A methodology is described for the synthesis of functionalized, star-branched copolymers with compositionally heterogeneous arms of controlled molecular weight and narrow molecular weight distribution using 1, 3-bis(1-pbenylethenyl) benzene.
基金supported by the Teli Fellowship from Beijing Institute of Technology,the National Natural Science Foundation of China(Nos.52303366,22173109).
文摘In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.
基金Funded by National Natural Science Foundation of China (Nos.51372179, 51772224)the Open Projects Foundation of Yangtze Optical Fiber and Cable Joint Stock Limited Company (YOFC)(No.SKLD1705)。
文摘The surface-enhanced Raman scattering(SERS) optical fiber probes were successfully prepared by self-assembling on polyelectrolyte multilayers. Gold nanorods(Au NRs) were used as SERS enhancement material to give excellent biological affinity and stability to the SERS optical fiber probes. Au NRs were synthesized by seed growth method. The synergistic effect between AgNO_(3) and surfactant was investigated, and the highest yield was found when AgNO_(3) was 500 uL. Meanwhile, different SERS optical fiber probes were obtained by selecting silane coupling agent, polyelectrolyte multilayer and graphene oxide(GO) to treat quartz fiber. It was found that the SERS optical fiber probes obtained by the self-assembled on polyelectrolyte multilayers method performed better than those by other methods. In addition, Mapping was combined with finite element simulation to analyze the electromagnetic field distribution at the fiber end face.The electromagnetic field distribution of Au NRs was investigated, the difference of electromagnetic field intensity around the Au NRs with different arrangements was compared, the strongest signal was obtained when the Au NRs were head-to-head. Finally, sensitivity of the optimized SERS optical fiber probes could reach 10^(-9)mol/L, with excellent stability and repeatability.
基金the National Natural Science Foundation of China under grant No.10574131Anhui Provincial Key Laboratory Special Fundthe Presidential Scholarship Special Fund.
文摘This article reviews recent progresses in growth mechanism, synthesis, and applications of zinc oxide nano-materials (mainly focusing on one-dimensional (1D) nanomaterials). In the first part of this article, we briefly introduce the importance, the synthesis methods and growth mechanisms, the properties and applications of ZnO 1D nanomaterials. In the second part of this article, the growth mechanisms of ZnO 1D nanomaterials will be discussed in detail in the framework of vapor-liquid-solid (VLS), vapor-solid (VS), and aqueous solution growth (ASG) approaches. Both qualitative and quantitative information will be provided to show how a controlled synthesis of ZnO 1D nanomaterials can be achieved. In the third part of this article, we present recent progresses in our group for the synthesis of ZnO 1D nanomaterials, and the results from other groups will only be mentioned briefly. Especially, experiment designing according to theories will be elaborated to demonstrate the concept of controlled synthesis. In the fourth part of this article, the properties and potential applications of ZnO 1D nanomaterials will be treated. Finally, a summary part will be presented in the fifth section. The future trend of research for ZnO 1D nanomaterials will be pointed out and key issues to be solved will be proposed.
基金supported by the National Natural Science Foundation of China (51403114, 21905167)Science and Technology Innovation Program of Universities of Shandong Province (2020KJA012)+3 种基金Taishan Scholars Program of Shandong Province (tsqn201909065)China Postdoctoral Science Foundation (No. 2014 M56053, 2019M650232)the Opening Fund of State Key Laboratory of Heavy Oil Processing (SKLOP202002004)Fundamental Research Funds for the Central Universities (GK202003025)。
文摘Designing a highly active-and stable non-noble metal bifunctional oxygen catalyst for rechargeable Znair battery remains a great challenge. Herein, we develop a facile and melamine-assisted-pyrolysis(MAP)strategy for the synthesis of core–shell Co-based electrocatalysts@N-doped carbon nanotubes(Co@CNTs)derived from metal–organic frameworks. The Co@CNTs exhibited excellent bifunctional electrocatalytic performance for both oxygen evolution and reduction. DFT calculations demonstrated that the Gibbs free energy of the rate-determining step was small enough to improve ORR activities. As a result, a Zn-air battery assembled with Co@CNTs proves a lager power density, low voltage gap between charge–discharge and excellent stability. Thus, this work offers a facile strategy to realize the synthesis of non-noble metal electrocatalyst for Zn-air battery materials with high electrochemical performance.
基金supported by the National Natural Science Foundation of China(20776089)the Fundamental Research Funds for the Central Universities(2014NZYQN20)
文摘Doping effects of manganese (Mn) on catalytic performance and structure evolution of NiMgO catalysts for synthesis of multi-walled carbon nanotubes (MWCNTs) from methane were investigated for the first time. Addition of Mn in NiMgO catalyst can greatly improve the MWCNTs yield. Mno.2NiMgO catalyst among the tested ones gives the highest MWCNTs yield as 2244%, which is two times higher than that of the catalyst without Mn. The structure evolution, reduction behaviors and surface chemical properties of MnNiMgO catalysts with various Mn contents were studied in detail. It was found that the stable solid solution of NiMgO2 formed in NiMgO catalyst was disturbed by the addition of Mn. Instead, another solid solution of MnMg608 is formed. More amount of Ni can be reduced and dispersed on the catalyst surface to be acted as active sites. Importantly, the changes of Ni content on the surface are correlated with the Ni particle size and the outer diameter of MWCNTs, suggesting the controllable synthesis of MWCNTs over MnNiMgO catalysts.
基金a part of the project titled "Development of Key Marine Equipments for Enhancement of Ocean Industry-Development of Underwater Manipulator and Thrusting System Driven by Electric Motor" funded by the Ministry of Land, Transport and Maritime Affairs, Korea
文摘This paper is concerned with the robust control synthesis of autonomous underwater vehicle (AUV) for general path following maneuvers. First, we present maneuvering kinematics and vehicle dynamics in a unified framework. Based on H∞ loop-shaping procedure, the 2-DOF autopilot controller has been presented to enhance stability and path tracking. By use of model reduction, the high-order control system is reduced to one with reasonable order, and further the scaled low-order controller has been analyzed in both the frequency and the time domains. Finally, it is shown that the autopilot control system provides robust performance and stability against prescribed levels of uncertainty.
基金The authors would like to thank the Australian Research Council(ARC DP170103317,DP200103043)for financial support during the course of this study.Prof Jun Chen would like to thank the Australian National Fabrication Facility and EMC at the University of Wollongong for facilities/equipment access.
文摘Controllable design and synthesis of catalysts with the target active sites are extremely important for their applications such as for the oxygen reduction reaction(ORR)in fuel cells.However,the controllably synthesizing electrocatalysts with a single type of active site still remains a grand challenge.In this study,we developed a facile and scalable method for fabricating highly efficient ORR electrocatalysts with sole atomic Fe-N4 species as the active site.Herein,the use of cost-effective highly porous carbon as the support not only could avoid the aggregation of the atomic Fe species but also a feasible approach to reduce the catalyst cost.The obtained atomic Fe-N4 in activated carbon(aFe@AC)shows excellent ORR activity.Its half-wave potential is 59 mV more negative but 47 mV more positive than that of the commercial Pt/C in acidic and alkaline electrolytes,respectively.The full cell performance test results show that the aFe@AC sample is a promising candidate for direct methanol fuel cells.This study provides a general method to prepare catalysts with a certain type of active site and definite numbers.
基金supported by the National Natural Science Foundation of China(21703046)the National Key R&D of China(2016YFF0203803,2016YFA0200902)~~
文摘Photocatalytic water splitting has increasingly attracted attention as one of the most useful methods of converting solar energy into chemical fuel.However,the undesirable reverse reaction significantly limits the enhancement of efficiency.Herein,we fabricated an Au nanorods/TiO2 nanodumbbells structure photocatalyst(Au NRs/TiO2 NDs)via a facile synthetic strategy,which has spatially separated oxidation and reduction reaction zones.Owing to the unique structure,the charge separation of these photocatalysts can be significantly improved and the reverse reaction can be efficiently inhibited.The photogenerated electrons were injected from the TiO2 to the Au NRs,and a positively charged TiO2 region and negatively charged Au region were formed under UV irradiation.An enhanced hydrogen production performance was obtained compared with that seen in normal Au-TiO2 heterostructure.Under optimized conditions,the H2-production rate can reach up to 60,264μmol/g/h,about six times higher than previously reported Au/TiO2 photocatalysts.Besides this,our work also demonstrates the key factors of precise synthesis of the Au NRs/TiO2 NDs structure,which provides a new perspective and experience for the design of similar catalysts.
基金Z.L.acknowledge the support from Research Grant Council of Hong Kong SAR(16304518),NSFC-RGC Joint Research Scheme(N_HKUST607/17)the Innovation and Technology Commission(ITCCNERC14SC01)+3 种基金the Zhongshan City Burea of Science and Technology(2019AG018)the IER foundation(HT-JD-CXY-201907)research fund of Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory(NO.2020B1212030010)Guangdong Provincial Department of Science and Technology(grants 2020A0505090003).
文摘Two-dimensional(2D)hexagonal boron nitride(hBN),due to its extraordinary thermal,chemical,and optical properties,has arisen as an enticing material for the research community to explore for various applications,including the use of site defects in hBN as single photon emitters(SPEs).In this review,we systematically summarize recent advanced strategies towards the controllable synthesis of 2D hBN using chemical vapor deposition,towards a full control of the domain size,orientation,morphology,layer number,and stacking order,etc.Moreover,we review the underlying mechanisms for single photon emission(SPE)in hBN and methods to selectively generate and tune the SPEs.Defects(e.g.,carbon substituted defects)are discussed for the potential use as emission sites.We finally give an outlook of future challenges and opportunities on desirable hBN synthesis and further investigation of SPEs in hBN,targeting to utilize hBN as single photon emitters in an industrial scale.