The Shanghai Cooperation Organisation(SCO)is the most extensive and populous comprehensive regional cooperation organization in the world,covering about half of the world's population,with not only a huge consumer...The Shanghai Cooperation Organisation(SCO)is the most extensive and populous comprehensive regional cooperation organization in the world,covering about half of the world's population,with not only a huge consumer market,but also rich natural resources and strong productivity.As one of the important platforms for the implementation of the Green Belt and Road Initiative,it is an important opportunity for the SCO to actively participate in global governance and contribute to building a community of global life.To investigate the status of biodiversity conservation in the SCO countries,we used literature analysis approach.We surveyed the performance and international cooperation status of the SCO countries in the implementation of the Convention on Biological Diversity(CBD),listed facing problems and threats to biodiversity conservation,including not optimistic biodiversity conservation project implementation status,contradiction between ecological protection and economic development,impacts of human activities,lack of funds and talents,etc.,and analyzed the biodiversity protection needs of the SCO countries from the perspectives of project and policy implementation status and international cooperation.According to the cooperation between China and the other SCO countries on biodiversity conservation and the post-2020 global biodiversity framework goals,we gave some recommendations:(1)promoting access to genetic resources and benefit-sharing;(2)integrating multiple funds and innovating the implementation of funding mechanism;(3)developing talent training and exchange programs and deepening multilateral cooperation;(4)strengthening cross-border cooperation and improving cooperation network;and(5)establishing a coordination mechanism for biodiversity conservation within the framework of the SCO.展开更多
[Objective]The research aimed to investigate the biological diversity of nematode-trapping fungi in the sediment of Erhai Lake.[Method]616 pieces of sediments were collected from Erhai Lake.The traditional classificat...[Objective]The research aimed to investigate the biological diversity of nematode-trapping fungi in the sediment of Erhai Lake.[Method]616 pieces of sediments were collected from Erhai Lake.The traditional classification and identification methods were used to isolate,purify and identify.[Result]3 genera and 22 species of nematode-trapping fungi were isolated.Arthrobotrys oligospora,A.musiformis and Dactylella leptospora were the dominant species,and their detection rates were 28.05%,16.04% and 8.92% respectively.By analyzing the diversity of nematode-trapping fungi in four seasons,it was found that the biological diversity was richer in summer,spring and autumn,and the diversity indexes were 2.59,2.47 and 2.34 respectively.The diversity index in winter was 1.48 and was lower.Species forming the adhesive nets were predominant;positive rate was 41.00%.[Conclusion]The rich nematode-trapping fungi resource existed in Erhai Lake,and its biological diversity had the seasonal variation characteristic.The nematode-trapping fungi which formed the viscous net were the dominant species in Erhai Lake.展开更多
With Mosuo's sacred natural sites of mountainous forest in Yongning-Lugu Lake area as the research subject,by using the method of ecology,the vegetation type in this area was initially identified.The control sampl...With Mosuo's sacred natural sites of mountainous forest in Yongning-Lugu Lake area as the research subject,by using the method of ecology,the vegetation type in this area was initially identified.The control sample plot of the same vegetation type at similar altitude and in similar soil condition would be selected and compared with the sample plot in sacred natural sites at length,so as to quantitatively analyze the protection of biological diversity in the perspective of ecological system.It showed that under the circumstance of the damage of ecological environment,complete natural vertical pattern was preserved thanks to sacred natural sites of mountainous forest established by reason of traditional religion and culture.The results of research and quantitative analysis showed that compared with the control sample plot of the same vegetation type,sacred natural sites were high in biological diversity and the species composition of plant community in sacred natural sites was closer to that of primitive forest.The result of quantitative analysis also indicated that sacred natural sites played a remarkable role in protecting vegetation and this protective function became more remarkable if the altitude was higher.And human were reminded to pay close attention to the preservation and protection function of sacred natural sites to natural ecological system at high altitude.展开更多
Tumor models were simulated in purebred Beagles at the T9-10 levels of the spinal cord and treated with spinal image-guided radiation therapy or conventional radiation therapy with 50 or 70 Gy total radiation. Three m...Tumor models were simulated in purebred Beagles at the T9-10 levels of the spinal cord and treated with spinal image-guided radiation therapy or conventional radiation therapy with 50 or 70 Gy total radiation. Three months after radiation, neuronal injury at the T9-10 levels was observed, including reversible injury induced by spinal image-guided radiation therapy and apoptosis induced by conventional radiation therapy. The number of apoptotic cells and expression of the proapoptotic protein Fas were significantly reduced, but expression of the anti-apoptotic protein heat shock protein 70 was significantly increased after image-guided radiation therapy compared with the conventional method of the same radiation dose. Moreover, the spinal cord cell apoptotic index positively correlated with the ratio of Fas/heat shock protein 70. These findings indicate that 3 months of radiation therapy can induce a late response in the spinal cord to radiation therapy; image-guided radiation therapy is safer and results in less neuronal injury compared with conventional radiation therapy.展开更多
Alien plant invasion success can be inhibited by two key biotic factors:native herbivores and plant diversity.However,few studies have experimentally tested whether these factors interact to synergistically resist inv...Alien plant invasion success can be inhibited by two key biotic factors:native herbivores and plant diversity.However,few studies have experimentally tested whether these factors interact to synergistically resist invasion success,especially factoring in changing global environments(e.g.nutrient enrichment).Here we tested how the synergy between native herbivores and plant diversity affects alien plant invasion success in various nutrient conditions.For this purpose,we exposed alien plant species in potmesocosms to different levels of native plant diversity(4 vs.8 species),native generalist herbivores,and high and low soil nutrient levels.We found that generalist herbivores preferred alien plants to native plants,inhibiting invasion success in a native community.This inhibition was amplified by highly diverse native communities.Further,the amplified effect between herbivory and native plant diversity was independent of nutrient conditions.Our results suggest that a higher diversity of native communities can strengthen the resistance of native generalist herbivores to alien plant invasions by enhancing herbivory tolerance.The synergistic effect remains in force in nutrient-enriched habitats that are always invaded by alien plant species.Our results shed light on the effective control of plant invasions using multi-trophic means,even in the face of future global changes.展开更多
Adaptive governance of areas set aside for future protection of biodiversity,sustainable production,and recreation requires knowledge about whether and how effects of area protection are modulated by climate change an...Adaptive governance of areas set aside for future protection of biodiversity,sustainable production,and recreation requires knowledge about whether and how effects of area protection are modulated by climate change and redistribution of species.To investigate this,we compare biodiversity of plants(assessed using vegetation plots)and arthropods(collected with Malaise traps,analyzed using metabarcoding)and productivity(tree growth,determined using dendrochronology)in protected and non-protected oak(Quercus spp.)forests along a latitudinal gradient(55.6°N–60.8°N)in Sweden.We also compare historical,recent and projected future climate in the region.In contrast to established global latitudinal diversity gradients,species richness of plants and arthropods increased northwards,possibly reflecting recent climate-induced community redistributions,but neither was higher in protected than in non-protected areas,nor associated with contemporary ground temperature.Species composition of arthropods also did not differ between protected and non-protected areas.Arthropod biomass increased with latitude,suggesting that the magnitude of cascading effects mediated via their roles as pollinators,herbivores,and prey for other trophic levels,varies geographically and will change with a moving climate.Annual growth rate of oaks(an ecosystem service in the form of biomass increase and carbon sequestration)was independent of latitude and did not differ between protected and non-protected areas.Our findings question the efficacy of contemporary designation and management of protected oak forests,and emphasize that development and implementation of modified climate smart conservation strategies is needed to safeguard ecosystem functioning,biodiversity,and recreational values of protected forest areas against future challenges.展开更多
The forest plant biological diversity investigations were conducted in Laoyeling Forest Ecological Experimental Station on Mao’er Mountains in eastern Heltongjiang Province. Sample plots were six different forest com...The forest plant biological diversity investigations were conducted in Laoyeling Forest Ecological Experimental Station on Mao’er Mountains in eastern Heltongjiang Province. Sample plots were six different forest communities. Field works were divided into three seasons : spring, summer and autumn in one year. The results showed that forest plant biological diversity varied with seasons as well as growth forms. Herb species diversity values were the highest in the community growth forms. Diversity indices No, H’ and E1 were selected out as the best richness, diversity and evenness indices to indicate the biological diversity in forest community.展开更多
The 1998 Conference of Parties to the Convention on Biological Diversity asked national governments to demonstrate the importance of biological diversity in supporting rural communities. This paper introduces‘agrodiv...The 1998 Conference of Parties to the Convention on Biological Diversity asked national governments to demonstrate the importance of biological diversity in supporting rural communities. This paper introduces‘agrodiversity’as the primary way in which farmers use biological diversity and, more generally, the natural diversity of the environment for production, including their choice of crops, and management of land, water and biota as a whole. Promoting agrodiversity and understanding how it functions in tropical smallholder farming systems is the best way that importance may be shown. A win-win scenario is presented which links agrodiversity to land degradation control and sustainable rural livelihoods as evidenced by food security. It is argued that policies that encourage biological diversity in areas of land use will not only meet countries’ responsibilities under the Convention but will also address land degradation problems and support to rural livelihoods. The human significance of various types of biological diversity is shown. Sustainable rural livelihoods are presented in the new capital assets framework to demonstrate how rural households may use various components to control land degradation. To enable agrodiversity to be implemented practically, it has been codified into core elements of: biophysical diversity, the diversity of the natural environment that controls the resource base for food production; management diversity that embraces the practices (many of them indigenous) of farmers such as live hedges, soil amendments and ridge tillage techniques; agro-biodiversity which is the diversity of crop, plant and animal combinations; and organisational diversity, the way that farms are owned and operated, and the way that capital assets are allocated. Each element is then systematically related to show how agrodiversity controls land degradation and how it promotes food security. The example of the maize-Mucuna system in South America is cited as an evident demonstration of the value of agrodiversity to both soil conservation and to smallholder farmers’ livelihoods.展开更多
Sedentary crop-livestock mixed farming is the predominant agricultural land use in Central Himalaya upland and largely rainfed;agrochemicals are not used at all. Farmers focus on increasing yields with poor soil ferti...Sedentary crop-livestock mixed farming is the predominant agricultural land use in Central Himalaya upland and largely rainfed;agrochemicals are not used at all. Farmers focus on increasing yields with poor soil fertility management practices resulted in sharp decline in production of pea crop in the study site. Therefore in present study options are being looked into devising some conservation strategies that increase yields of pea while reducing harm to soil biodiversity at a local scale here. The present study explores the efficiency of P. excavatus as endemic earthworm species for vermicomposting, the potential utilization of Conventional oak based farmyard manure (FM-O);Conventional pine based farmyard manure(FM-P);Earthworm fed ? Cow dung + oak leaves based vermicompost (VC-O);Earthworm fed ? Cow dung + pine leaves based vermicompost (VC-P);freshly fallen leaf litter (LM) on pea crop productivity and soil faunal diversity in agricultural system, and if the changed soil faunal biodiversity scenario in any way affected the crop production. The higher uptake of nitrogen, higher germination percentage enhanced seedling growth, early emergence flower, increase number of pods, seed, husk , and root biomass was significantly higher in plants which received VC-O followed by VC-P as manure input treatments. The change in the diversity of soil micro arthropods in relation to quality change in organic residues input in experimental plots and expressed as the Simpsons diversity index showed that the diversity of soil fauna is related to improvements in soil conditions resulting from nutrient manipulations through vermicompost and conventional compost treatments. This response of soil biota to increased production most likely represents an increase in the availability of resources through addition of vermicompost when compared to other compost treatments. Alternatively, an increase in predators and therefore predation, could, increase the diversity of its prey, thereby decreasing dominant competitors and reducing the possibility of competitive exclusion, but this needs further studies. Chronosequence study during cropping season indicated that the composition and abundance of soil fauna in agricultural fields changed considerably with time under cultivation. This technology has now been adopted by the farmers in the area once again for growing the pea crop.展开更多
Not long ago, an international symposium was held in Lhasa to discuss ways and means of protecting and managing the region’s biological diversity. Wangdui took the advantage of the occasion to interview Mr. Li Boshen...Not long ago, an international symposium was held in Lhasa to discuss ways and means of protecting and managing the region’s biological diversity. Wangdui took the advantage of the occasion to interview Mr. Li Bosheng, research fellow with the Beijing Plant Research Institute and Director of the Beijing Botanical Garden. Mr. Li is one of the few who discovered the U-turn canyon on the Yarlung Zangbo River. The following is his view on the symposium theme.展开更多
As one of the main methods of microbial community functional diversity measurement, biolog method was favored by many researchers for its simple oper- ation, high sensitivity, strong resolution and rich data. But the ...As one of the main methods of microbial community functional diversity measurement, biolog method was favored by many researchers for its simple oper- ation, high sensitivity, strong resolution and rich data. But the preprocessing meth- ods reported in the literatures were not the same. In order to screen the best pre- processing method, this paper took three typical treatments to explore the effect of different preprocessing methods on soil microbial community functional diversity. The results showed that, method B's overall trend of AWCD values was better than A and C's. Method B's microbial utilization of six carbon sources was higher, and the result was relatively stable. The Simpson index, Shannon richness index and Car- bon source utilization richness index of the two treatments were B〉C〉A, while the Mclntosh index and Shannon evenness were not very stable, but the difference of variance analysis was not significant, and the method B was always with a smallest variance. Method B's principal component analysis was better than A and C's. In a word, the method using 250 r/min shaking for 30 minutes and cultivating at 28 ℃ was the best one, because it was simple, convenient, and with good repeatability.展开更多
Soil microbes play a major role in ecological processes and are closely associated with the aboveground plant community. In order to understand the effects of vegetation type on the characteristics of soil microbial c...Soil microbes play a major role in ecological processes and are closely associated with the aboveground plant community. In order to understand the effects of vegetation type on the characteristics of soil microbial communities, the soil microbial communities were assessed by plate counts, phospholipid fatty acid (PLFA) and Biolog microplate techniques in five plant communities, i.e., soybean field (SF), artificial turf (AT), artificial shrub (AS), natural shrub (NS), and maize field (MF) in Jinan, Shandong Province, North China. The results showed that plant diversity had little discernible effect on microbial biomass but a positive impact on the evenness of utilized substrates in Biolog microplate. Legumes could significantly enhance the number of cultural microorganisms, microbial biomass, and community catabolic diversity. Except for SF dominated by legumes, the biomass of fungi and the catabolic diversity of microbial community were higher in less disturbed soil beneath NS than in frequently disturbed soils beneath the other vegetation types. These results confirmed that high number of plant species, legumes, and natural vegetation types tend to support soil microbial communities with higher function. The present study also found a significant correlation between the number of cultured bacteria and catabolic diversity of the bacterial community. Different research methods led to varied results in this study. The combination of several approaches is recommended for accurately describing the characteristics of microbial communities in many respects.展开更多
Degradation of chlorpyrifos at different concentrations in soil and its impact on soil microbial functional diversity were investigated under laboratory condition. The degradation half-live of chlorpyrifos at levels o...Degradation of chlorpyrifos at different concentrations in soil and its impact on soil microbial functional diversity were investigated under laboratory condition. The degradation half-live of chlorpyrifos at levels of 4, 8, and 12 mg/kg in soil were calculated to be 14.3, 16.7, and 18.0 d, respectively. The Biolog study showed that the average well color development (AWCD) in soils was significantly (P 〈 0.05) inhibited by chlorpyrifos within the first two weeks and thereafter recovered to a similar level as the control. A similar variation in the diversity indices (Simpson index lID and McIntosh index U) was observed, but no significant difference among the values of the Shannon-Wiener index H' was found in chlorpyrifos-treated soils. With an increasing chlorpyrifos concentration, the half-life of chlorpyrifos was significantly (P ≤ 0.05) extended and its inhibitory effect on soil microorganisms was aggravated. It is concluded that chlorpyrifos residues in soil had a temporary or short-term inhibitory effect on soil microbial functional diversity.展开更多
As one of the most important biological factors that maintain the stability of the largest fixed and semi-fixed desert in China,the Gurbantunggut Desert,the biological soil crusts (BSCs) develop well and play critical...As one of the most important biological factors that maintain the stability of the largest fixed and semi-fixed desert in China,the Gurbantunggut Desert,the biological soil crusts (BSCs) develop well and play critical ecological roles in the desert ecosystem. In this paper,we briefly summarize our research findings since 2002 including species composition,distribution pattern and ecological functions of BSCs in the desert. Our results indicate abundant species diversity of BSCs in the Gurbantunggut Desert in comparison to other deserts in China. At the scales of sand dune or whole desert,the distribution patterns of BSCs are location-specific. The existence of BSCs in this desert could:(1) accelerate the formation of desert soil and the weathering of minerals; (2) accumulate organic matter in surface soil through related species in soil crusts; (3) enhance the abilities of sand surface to resist wind erosion; (4) influence seed germination of vascular plants; and (5) enhance the production of dew deposition on sandy soil surface.展开更多
An experiment with seven N, P, K-fertilizer treatments, i.e., control (no fertilizer), NP, NK, PK, NPK, NP2K, and NPK2 where P2 and K2 indicate double amounts of P and K fertilizers respectively, was conducted to exam...An experiment with seven N, P, K-fertilizer treatments, i.e., control (no fertilizer), NP, NK, PK, NPK, NP2K, and NPK2 where P2 and K2 indicate double amounts of P and K fertilizers respectively, was conducted to examine the effect of long-term continuous application of chemical fertilizers on microbial biomass and functional diversity of a black soil (Udoll in the USDA Soil Taxonomy) in Northeast China. The soil microbial biomass C ranged between 94 and 145 mg kg-1, with the NK treatment showing a lower biomass; the functional diversity of soil microbial community ranged from 4.13 to 4.25, with an increasing tendency from control to double-fertilizer treatments, and to triple-fertilizer treatments. The soil microbial biomass, and the microbial functional diversity and evenness did not show any significant differences among the different fertilizer treatments including control, suggesting that the long-term application of chemical fertilization would not result in significant changes in the microbial characteristics of the black soil.展开更多
With the widespread cultivation of transgenic crops, there is increasing concern about unintended effects of these crops on soil environmental quality. In this study, we used the Biolog method and ELISA to evaluate th...With the widespread cultivation of transgenic crops, there is increasing concern about unintended effects of these crops on soil environmental quality. In this study, we used the Biolog method and ELISA to evaluate the possible effects of Osr HSA transgenic rice on soil microbial utilization of carbon substrates under field conditions. There were no significant differences in average well-color development(AWCD) values, Shannon–Wiener diversity index(H), Simpson dominance indices(D) and Shannon–Wiener evenness indices(E) of microbial communities in rhizosphere soils at eight samplings between Osr HSA transgenic rice and its non-transgenic counterpart. The main carbon sources utilized by soil microbes were carbohydrates, carboxylic acids, amino acids and polymers. The types,capacities and patterns of carbon source utilization by microbial communities in rhizosphere soils were similar throughout the detection period. We detected no Osr HSA protein in the roots of Osr HSA transgenic rice. We concluded that Osr HSA transgenic rice and the r HSA protein it produced did not alter the functional diversity of microbial communities in the rhizosphere.展开更多
Characterizing trait variation across different ecological scales in plant communities has been viewed as a way to gain insights into the mechanisms driving species coexistence.However,little is known about how change...Characterizing trait variation across different ecological scales in plant communities has been viewed as a way to gain insights into the mechanisms driving species coexistence.However,little is known about how changes in intraspecific and interspecific traits across sites influence species richness and community assembly,especially in understory herbaceous communities.Here we partitioned the variance of four functional traits(maximum height,leaf thickness,leaf area and specific leaf area)across four nested biological scales:individual,species,plot,and elevation to quantify the scale-dependent distributions of understory herbaceous trait variance.We also integrated the comparison of the trait variance ratios to null models to investigate the effects of different ecological processes on community assembly and functional diversity along a 1200-m elevational gradient in Yulong Mountain.We found interspecific trait variation was the main trait variation component for leaf traits,although intraspecific trait variation ranged from 10% to 28% of total variation.In particular,maximum height exhibited high plasticity,and intraspecific variation accounted for 44% of the total variation.Despite the fact that species composition varied across elevation and species richness decreased dramatically along the elevational gradient,there was little variance at our largest(elevation)scale in leaf traits and functional diversity remained constant along the elevational gradient,indicating that traits responded to smaller scale influences.External filtering was only observed at high elevations.However,strong internal filtering was detected along the entire elevational gradient in understory herbaceous communities,possibly due to competition.Our results provide evidence that species coexistence in understory herbaceous communities might be structured by differential niche-assembled processes.This approach ee integrating different biological scales of trait variation ee may provide a better understanding of the mechanisms involved in the structure of communities.展开更多
Cinnarnomum chago (family Lauraceae) is an essential source of timber and oil. This plant is narrowly distributed in the western part of the Yunnan Province. In this study, the distribution, habitat, and biological ...Cinnarnomum chago (family Lauraceae) is an essential source of timber and oil. This plant is narrowly distributed in the western part of the Yunnan Province. In this study, the distribution, habitat, and biological characteristics of C chago were examined through field investigation. The genetic diversity and the variation of the remnant populations were also studied using the inter-simple sequence repeat technique. Results showed that C chago is mainly distributed in the upstream tributary mountains of Lancang River in Yunlong County of Yunnan Province. The species distribution exhibited a fragmented pattern with five isolated populations and high-frequency anthropogenic interference. A combination of morphological features (opposite leaves, pinnate leaf veins, absence of glandular fossa, large drupe, small punch, and pollen surface with triangular spike grain, with cushion bumps at the base) indicated that C. chago is a key phylogenetic taxon between the two sections of Asian Cinnamomurn plants (Sect. Camphora (Trew) Meissn. and Sect. Cinnamomum). Analysis of the genetic diversity of C. chago indicated that it has a moderately high level of genetic diversity at the population and species levels (populations level: Ne - 1.629, H = 0.348, I=0.504, and PPB = 83.3%; species level: Ne - 1.864, H = 0.460, I = 0.652, and PPB - 100%). Analysis of molecular variance revealed that 17% of the genetic variation was divided between the populations, whereas 83% was observed within the populations. Based on these results, we suggest the inclusion of C. chago in the Wild Plants with Extremely Small Populations in China. Moreover, the species should be given special attention and protection. Some strategies were proposed for the conservation of the C. chago populations.展开更多
A total of 50 endophytic bacterial isolates were obtained from Kobreasia capillifolia at alpine grasslands in the Eastern Qilian Mountains on the Tibetan Plateau in China. Based on the sequencing and phylogenetic anal...A total of 50 endophytic bacterial isolates were obtained from Kobreasia capillifolia at alpine grasslands in the Eastern Qilian Mountains on the Tibetan Plateau in China. Based on the sequencing and phylogenetic analysis of 16 S r DNA genes, all isolates phylogenetically related closely to Bacillus, Acinetobacter, Stenotrophomonas, Brevundimonas, Arthrobacter, Curtobacterium, Paenibacillus, Plantibacter, Promicromonospora, Serratia, and Microbacterium, among which Bacillus was the predominant genus(47.8% of the total number of endophytic isolates). These isolates possessed different biological functions. In 50 endophytic bacteria, 42 isolates produced indole acetic acid(IAA) on King medium. There were seven isolates showing potency of mineral phosphate solubilization in Pikovaskaia's(PKO) liquid medium. Seven isolates exhibited antagonistic effect against Fusarium avenaceum, Colletotrichum coccodes and Phoma foveata. This was the first report on diversity and plant growth promotion of endophytic bacteria from K. capillifolia on alpine grassland in the Eastern Qilian Mountains, Chain. It is essential for revealing the relationship among plant, microorganism, and the special environment because the potential function of endophytic bacteria made a contribution to the interactions of plants and endophytic bacteria.展开更多
Background: With the loss of species worldwide due to anthropogenic factors, especially in forested ecosystems, it has become more urgent than ever to understand the biodiversity-ecosystem functioning relationship (...Background: With the loss of species worldwide due to anthropogenic factors, especially in forested ecosystems, it has become more urgent than ever to understand the biodiversity-ecosystem functioning relationship (BEFR). BEFR research in forested ecosystems is very limited and thus studies that incorporate greater geographic coverage and structural complexity are needed. Methods: We compiled ground-measured data from approx, one half million forest inventory sample plots across the contiguous United States, Alaska, and northeastern China to map tree species richness, forest stocking, and productivity at a continental scale. Based on these data, we investigated the relationship between forest productivity and tree species diversity, using a multiple regression analysis and a non-parametric approach to account for spatial autocorrelation. Results: In general, forests in the eastern United States consisted of more tree species than any other regions in the country. The highest forest stocking values over the entire study area were concentrated in the western United States and Central Appalachia. Overall, 96.4 % of sample plots (477,281) showed a significant positive effect of species richness on site productivity, and only 3.6 % (17,349) had an insignificant or negative effect. Conclusions: The large number of ground-measured plots, as well as the magnitude of geographic scale, rendered overwhelming evidence in support of a positive BEFR. This empirical evidence provides insights to forest management and biological conservation across different types of forested ecosystems. Forest timber productivity may be impaired by the loss of species in forests, and biological conservation, due to its potential benefits on maintaining species richness and productivity, can have profound impacts on the functioning and services of forested ecosystems.展开更多
基金the International Cooperation and Compliance Programme of the Ministry of Ecology and Environment,the People’s Republic of China(22110106029)。
文摘The Shanghai Cooperation Organisation(SCO)is the most extensive and populous comprehensive regional cooperation organization in the world,covering about half of the world's population,with not only a huge consumer market,but also rich natural resources and strong productivity.As one of the important platforms for the implementation of the Green Belt and Road Initiative,it is an important opportunity for the SCO to actively participate in global governance and contribute to building a community of global life.To investigate the status of biodiversity conservation in the SCO countries,we used literature analysis approach.We surveyed the performance and international cooperation status of the SCO countries in the implementation of the Convention on Biological Diversity(CBD),listed facing problems and threats to biodiversity conservation,including not optimistic biodiversity conservation project implementation status,contradiction between ecological protection and economic development,impacts of human activities,lack of funds and talents,etc.,and analyzed the biodiversity protection needs of the SCO countries from the perspectives of project and policy implementation status and international cooperation.According to the cooperation between China and the other SCO countries on biodiversity conservation and the post-2020 global biodiversity framework goals,we gave some recommendations:(1)promoting access to genetic resources and benefit-sharing;(2)integrating multiple funds and innovating the implementation of funding mechanism;(3)developing talent training and exchange programs and deepening multilateral cooperation;(4)strengthening cross-border cooperation and improving cooperation network;and(5)establishing a coordination mechanism for biodiversity conservation within the framework of the SCO.
基金Supported by National Natural Science Foundation of China(30960017)Fund Project of Yunnan Education Department(09Y0360)Start Fund ofDali University(KY421140)~~
文摘[Objective]The research aimed to investigate the biological diversity of nematode-trapping fungi in the sediment of Erhai Lake.[Method]616 pieces of sediments were collected from Erhai Lake.The traditional classification and identification methods were used to isolate,purify and identify.[Result]3 genera and 22 species of nematode-trapping fungi were isolated.Arthrobotrys oligospora,A.musiformis and Dactylella leptospora were the dominant species,and their detection rates were 28.05%,16.04% and 8.92% respectively.By analyzing the diversity of nematode-trapping fungi in four seasons,it was found that the biological diversity was richer in summer,spring and autumn,and the diversity indexes were 2.59,2.47 and 2.34 respectively.The diversity index in winter was 1.48 and was lower.Species forming the adhesive nets were predominant;positive rate was 41.00%.[Conclusion]The rich nematode-trapping fungi resource existed in Erhai Lake,and its biological diversity had the seasonal variation characteristic.The nematode-trapping fungi which formed the viscous net were the dominant species in Erhai Lake.
基金Supported by Key Project of Natural Science of Sichuan Province Office of Education(2003A183)Key Project of Natural Science of Liangshan Prefecture Science Commission in 2004(Liangshan Prefecture Science Bureau[2004]46J)~~
文摘With Mosuo's sacred natural sites of mountainous forest in Yongning-Lugu Lake area as the research subject,by using the method of ecology,the vegetation type in this area was initially identified.The control sample plot of the same vegetation type at similar altitude and in similar soil condition would be selected and compared with the sample plot in sacred natural sites at length,so as to quantitatively analyze the protection of biological diversity in the perspective of ecological system.It showed that under the circumstance of the damage of ecological environment,complete natural vertical pattern was preserved thanks to sacred natural sites of mountainous forest established by reason of traditional religion and culture.The results of research and quantitative analysis showed that compared with the control sample plot of the same vegetation type,sacred natural sites were high in biological diversity and the species composition of plant community in sacred natural sites was closer to that of primitive forest.The result of quantitative analysis also indicated that sacred natural sites played a remarkable role in protecting vegetation and this protective function became more remarkable if the altitude was higher.And human were reminded to pay close attention to the preservation and protection function of sacred natural sites to natural ecological system at high altitude.
基金supported by the National Natural Science Foundation of China,No.81060182the Natural Science Foundation of Xinjiang Uygur Autonomous Region,No.2012211B34the Key Technology Research and Development and Major Program of Xinjiang Uygur Autonomous Region,No.200833116
文摘Tumor models were simulated in purebred Beagles at the T9-10 levels of the spinal cord and treated with spinal image-guided radiation therapy or conventional radiation therapy with 50 or 70 Gy total radiation. Three months after radiation, neuronal injury at the T9-10 levels was observed, including reversible injury induced by spinal image-guided radiation therapy and apoptosis induced by conventional radiation therapy. The number of apoptotic cells and expression of the proapoptotic protein Fas were significantly reduced, but expression of the anti-apoptotic protein heat shock protein 70 was significantly increased after image-guided radiation therapy compared with the conventional method of the same radiation dose. Moreover, the spinal cord cell apoptotic index positively correlated with the ratio of Fas/heat shock protein 70. These findings indicate that 3 months of radiation therapy can induce a late response in the spinal cord to radiation therapy; image-guided radiation therapy is safer and results in less neuronal injury compared with conventional radiation therapy.
基金supported by Postdoctoral Funding from Jilin Province to Liping Shan(2020000147).
文摘Alien plant invasion success can be inhibited by two key biotic factors:native herbivores and plant diversity.However,few studies have experimentally tested whether these factors interact to synergistically resist invasion success,especially factoring in changing global environments(e.g.nutrient enrichment).Here we tested how the synergy between native herbivores and plant diversity affects alien plant invasion success in various nutrient conditions.For this purpose,we exposed alien plant species in potmesocosms to different levels of native plant diversity(4 vs.8 species),native generalist herbivores,and high and low soil nutrient levels.We found that generalist herbivores preferred alien plants to native plants,inhibiting invasion success in a native community.This inhibition was amplified by highly diverse native communities.Further,the amplified effect between herbivory and native plant diversity was independent of nutrient conditions.Our results suggest that a higher diversity of native communities can strengthen the resistance of native generalist herbivores to alien plant invasions by enhancing herbivory tolerance.The synergistic effect remains in force in nutrient-enriched habitats that are always invaded by alien plant species.Our results shed light on the effective control of plant invasions using multi-trophic means,even in the face of future global changes.
基金supported by The Swedish National Research Programme on Climate and Formas,under grant numbers Dnr.2018-02846 and Dnr.2021-02142,to M.F.,A.F.,and J.S.,and by Linnaeus University,to A.F.and M.F.
文摘Adaptive governance of areas set aside for future protection of biodiversity,sustainable production,and recreation requires knowledge about whether and how effects of area protection are modulated by climate change and redistribution of species.To investigate this,we compare biodiversity of plants(assessed using vegetation plots)and arthropods(collected with Malaise traps,analyzed using metabarcoding)and productivity(tree growth,determined using dendrochronology)in protected and non-protected oak(Quercus spp.)forests along a latitudinal gradient(55.6°N–60.8°N)in Sweden.We also compare historical,recent and projected future climate in the region.In contrast to established global latitudinal diversity gradients,species richness of plants and arthropods increased northwards,possibly reflecting recent climate-induced community redistributions,but neither was higher in protected than in non-protected areas,nor associated with contemporary ground temperature.Species composition of arthropods also did not differ between protected and non-protected areas.Arthropod biomass increased with latitude,suggesting that the magnitude of cascading effects mediated via their roles as pollinators,herbivores,and prey for other trophic levels,varies geographically and will change with a moving climate.Annual growth rate of oaks(an ecosystem service in the form of biomass increase and carbon sequestration)was independent of latitude and did not differ between protected and non-protected areas.Our findings question the efficacy of contemporary designation and management of protected oak forests,and emphasize that development and implementation of modified climate smart conservation strategies is needed to safeguard ecosystem functioning,biodiversity,and recreational values of protected forest areas against future challenges.
文摘The forest plant biological diversity investigations were conducted in Laoyeling Forest Ecological Experimental Station on Mao’er Mountains in eastern Heltongjiang Province. Sample plots were six different forest communities. Field works were divided into three seasons : spring, summer and autumn in one year. The results showed that forest plant biological diversity varied with seasons as well as growth forms. Herb species diversity values were the highest in the community growth forms. Diversity indices No, H’ and E1 were selected out as the best richness, diversity and evenness indices to indicate the biological diversity in forest community.
文摘The 1998 Conference of Parties to the Convention on Biological Diversity asked national governments to demonstrate the importance of biological diversity in supporting rural communities. This paper introduces‘agrodiversity’as the primary way in which farmers use biological diversity and, more generally, the natural diversity of the environment for production, including their choice of crops, and management of land, water and biota as a whole. Promoting agrodiversity and understanding how it functions in tropical smallholder farming systems is the best way that importance may be shown. A win-win scenario is presented which links agrodiversity to land degradation control and sustainable rural livelihoods as evidenced by food security. It is argued that policies that encourage biological diversity in areas of land use will not only meet countries’ responsibilities under the Convention but will also address land degradation problems and support to rural livelihoods. The human significance of various types of biological diversity is shown. Sustainable rural livelihoods are presented in the new capital assets framework to demonstrate how rural households may use various components to control land degradation. To enable agrodiversity to be implemented practically, it has been codified into core elements of: biophysical diversity, the diversity of the natural environment that controls the resource base for food production; management diversity that embraces the practices (many of them indigenous) of farmers such as live hedges, soil amendments and ridge tillage techniques; agro-biodiversity which is the diversity of crop, plant and animal combinations; and organisational diversity, the way that farms are owned and operated, and the way that capital assets are allocated. Each element is then systematically related to show how agrodiversity controls land degradation and how it promotes food security. The example of the maize-Mucuna system in South America is cited as an evident demonstration of the value of agrodiversity to both soil conservation and to smallholder farmers’ livelihoods.
文摘Sedentary crop-livestock mixed farming is the predominant agricultural land use in Central Himalaya upland and largely rainfed;agrochemicals are not used at all. Farmers focus on increasing yields with poor soil fertility management practices resulted in sharp decline in production of pea crop in the study site. Therefore in present study options are being looked into devising some conservation strategies that increase yields of pea while reducing harm to soil biodiversity at a local scale here. The present study explores the efficiency of P. excavatus as endemic earthworm species for vermicomposting, the potential utilization of Conventional oak based farmyard manure (FM-O);Conventional pine based farmyard manure(FM-P);Earthworm fed ? Cow dung + oak leaves based vermicompost (VC-O);Earthworm fed ? Cow dung + pine leaves based vermicompost (VC-P);freshly fallen leaf litter (LM) on pea crop productivity and soil faunal diversity in agricultural system, and if the changed soil faunal biodiversity scenario in any way affected the crop production. The higher uptake of nitrogen, higher germination percentage enhanced seedling growth, early emergence flower, increase number of pods, seed, husk , and root biomass was significantly higher in plants which received VC-O followed by VC-P as manure input treatments. The change in the diversity of soil micro arthropods in relation to quality change in organic residues input in experimental plots and expressed as the Simpsons diversity index showed that the diversity of soil fauna is related to improvements in soil conditions resulting from nutrient manipulations through vermicompost and conventional compost treatments. This response of soil biota to increased production most likely represents an increase in the availability of resources through addition of vermicompost when compared to other compost treatments. Alternatively, an increase in predators and therefore predation, could, increase the diversity of its prey, thereby decreasing dominant competitors and reducing the possibility of competitive exclusion, but this needs further studies. Chronosequence study during cropping season indicated that the composition and abundance of soil fauna in agricultural fields changed considerably with time under cultivation. This technology has now been adopted by the farmers in the area once again for growing the pea crop.
文摘Not long ago, an international symposium was held in Lhasa to discuss ways and means of protecting and managing the region’s biological diversity. Wangdui took the advantage of the occasion to interview Mr. Li Bosheng, research fellow with the Beijing Plant Research Institute and Director of the Beijing Botanical Garden. Mr. Li is one of the few who discovered the U-turn canyon on the Yarlung Zangbo River. The following is his view on the symposium theme.
基金Supported by National and International Scientific and Technological Cooperation Project"The application of Microbial Agents on Mining Reclamation and Ecological Recovery"(2011DFR31230)Key Project of Shanxi academy of Agricultural Science"The Research and Application of Bio-organic Fertilizer on Mining Reclamation and Soil Remediation"(2013zd12)Major Science and Technology Programs of Shanxi Province"Key Technology Research and Demonstration of mining waste land ecosystem Restoration and Reconstruction"(20121101009)~~
文摘As one of the main methods of microbial community functional diversity measurement, biolog method was favored by many researchers for its simple oper- ation, high sensitivity, strong resolution and rich data. But the preprocessing meth- ods reported in the literatures were not the same. In order to screen the best pre- processing method, this paper took three typical treatments to explore the effect of different preprocessing methods on soil microbial community functional diversity. The results showed that, method B's overall trend of AWCD values was better than A and C's. Method B's microbial utilization of six carbon sources was higher, and the result was relatively stable. The Simpson index, Shannon richness index and Car- bon source utilization richness index of the two treatments were B〉C〉A, while the Mclntosh index and Shannon evenness were not very stable, but the difference of variance analysis was not significant, and the method B was always with a smallest variance. Method B's principal component analysis was better than A and C's. In a word, the method using 250 r/min shaking for 30 minutes and cultivating at 28 ℃ was the best one, because it was simple, convenient, and with good repeatability.
基金Project supported by the Outstanding Young Scientists Foundation Grant of Shandong Province (No.2005BS08010)China Geological Survey Project (No.1212010310306)Key Project of Natural Science Foundation of Shandong Province (No.Z2006D04).
文摘Soil microbes play a major role in ecological processes and are closely associated with the aboveground plant community. In order to understand the effects of vegetation type on the characteristics of soil microbial communities, the soil microbial communities were assessed by plate counts, phospholipid fatty acid (PLFA) and Biolog microplate techniques in five plant communities, i.e., soybean field (SF), artificial turf (AT), artificial shrub (AS), natural shrub (NS), and maize field (MF) in Jinan, Shandong Province, North China. The results showed that plant diversity had little discernible effect on microbial biomass but a positive impact on the evenness of utilized substrates in Biolog microplate. Legumes could significantly enhance the number of cultural microorganisms, microbial biomass, and community catabolic diversity. Except for SF dominated by legumes, the biomass of fungi and the catabolic diversity of microbial community were higher in less disturbed soil beneath NS than in frequently disturbed soils beneath the other vegetation types. These results confirmed that high number of plant species, legumes, and natural vegetation types tend to support soil microbial communities with higher function. The present study also found a significant correlation between the number of cultured bacteria and catabolic diversity of the bacterial community. Different research methods led to varied results in this study. The combination of several approaches is recommended for accurately describing the characteristics of microbial communities in many respects.
基金supported by the National Hi-Tech Research and Development Program (863) of China (No.2006AA06Z386, 2007AA06Z306)the China Postdoctor-al Science Foundation (No. 20070421174)+2 种基金the National Natural Science Foundation of China (No. 30771254)the Zhejiang Provincial Natural Science Foundation (No.Z306260)the National Key Technologies R&D Pro-gram of China (No. 2006BAI09B03)
文摘Degradation of chlorpyrifos at different concentrations in soil and its impact on soil microbial functional diversity were investigated under laboratory condition. The degradation half-live of chlorpyrifos at levels of 4, 8, and 12 mg/kg in soil were calculated to be 14.3, 16.7, and 18.0 d, respectively. The Biolog study showed that the average well color development (AWCD) in soils was significantly (P 〈 0.05) inhibited by chlorpyrifos within the first two weeks and thereafter recovered to a similar level as the control. A similar variation in the diversity indices (Simpson index lID and McIntosh index U) was observed, but no significant difference among the values of the Shannon-Wiener index H' was found in chlorpyrifos-treated soils. With an increasing chlorpyrifos concentration, the half-life of chlorpyrifos was significantly (P ≤ 0.05) extended and its inhibitory effect on soil microorganisms was aggravated. It is concluded that chlorpyrifos residues in soil had a temporary or short-term inhibitory effect on soil microbial functional diversity.
基金supported by the Key Knowledge Innovation Project of the Chinese Academy of Sciences (KZCX2-YW-336)the National Natural Science Foundation of China (40771114)
文摘As one of the most important biological factors that maintain the stability of the largest fixed and semi-fixed desert in China,the Gurbantunggut Desert,the biological soil crusts (BSCs) develop well and play critical ecological roles in the desert ecosystem. In this paper,we briefly summarize our research findings since 2002 including species composition,distribution pattern and ecological functions of BSCs in the desert. Our results indicate abundant species diversity of BSCs in the Gurbantunggut Desert in comparison to other deserts in China. At the scales of sand dune or whole desert,the distribution patterns of BSCs are location-specific. The existence of BSCs in this desert could:(1) accelerate the formation of desert soil and the weathering of minerals; (2) accumulate organic matter in surface soil through related species in soil crusts; (3) enhance the abilities of sand surface to resist wind erosion; (4) influence seed germination of vascular plants; and (5) enhance the production of dew deposition on sandy soil surface.
基金the National Natural Science Foundation of China (No.40321101)the Ministry of Science and Technology of China (No.2005CB121105) the Knowledge Innovation Program of the Chinese Academy of Sciences(Nos.KZCX1-SW-19 and KZCX2-YW-408).
文摘An experiment with seven N, P, K-fertilizer treatments, i.e., control (no fertilizer), NP, NK, PK, NPK, NP2K, and NPK2 where P2 and K2 indicate double amounts of P and K fertilizers respectively, was conducted to examine the effect of long-term continuous application of chemical fertilizers on microbial biomass and functional diversity of a black soil (Udoll in the USDA Soil Taxonomy) in Northeast China. The soil microbial biomass C ranged between 94 and 145 mg kg-1, with the NK treatment showing a lower biomass; the functional diversity of soil microbial community ranged from 4.13 to 4.25, with an increasing tendency from control to double-fertilizer treatments, and to triple-fertilizer treatments. The soil microbial biomass, and the microbial functional diversity and evenness did not show any significant differences among the different fertilizer treatments including control, suggesting that the long-term application of chemical fertilization would not result in significant changes in the microbial characteristics of the black soil.
基金supported by the Major Project of China on New Varieties of GMO Cultivation (2012ZX08011-003 and 2014ZX08011-004B)
文摘With the widespread cultivation of transgenic crops, there is increasing concern about unintended effects of these crops on soil environmental quality. In this study, we used the Biolog method and ELISA to evaluate the possible effects of Osr HSA transgenic rice on soil microbial utilization of carbon substrates under field conditions. There were no significant differences in average well-color development(AWCD) values, Shannon–Wiener diversity index(H), Simpson dominance indices(D) and Shannon–Wiener evenness indices(E) of microbial communities in rhizosphere soils at eight samplings between Osr HSA transgenic rice and its non-transgenic counterpart. The main carbon sources utilized by soil microbes were carbohydrates, carboxylic acids, amino acids and polymers. The types,capacities and patterns of carbon source utilization by microbial communities in rhizosphere soils were similar throughout the detection period. We detected no Osr HSA protein in the roots of Osr HSA transgenic rice. We concluded that Osr HSA transgenic rice and the r HSA protein it produced did not alter the functional diversity of microbial communities in the rhizosphere.
基金supported by the National Key Basic Research Program of China (2014CB954100)the Ministry of Science and Technology of the People's Republic of China (2012FY110800)the Applied Fundamental Research Foundation of Yunnan Province (2014GA003)
文摘Characterizing trait variation across different ecological scales in plant communities has been viewed as a way to gain insights into the mechanisms driving species coexistence.However,little is known about how changes in intraspecific and interspecific traits across sites influence species richness and community assembly,especially in understory herbaceous communities.Here we partitioned the variance of four functional traits(maximum height,leaf thickness,leaf area and specific leaf area)across four nested biological scales:individual,species,plot,and elevation to quantify the scale-dependent distributions of understory herbaceous trait variance.We also integrated the comparison of the trait variance ratios to null models to investigate the effects of different ecological processes on community assembly and functional diversity along a 1200-m elevational gradient in Yulong Mountain.We found interspecific trait variation was the main trait variation component for leaf traits,although intraspecific trait variation ranged from 10% to 28% of total variation.In particular,maximum height exhibited high plasticity,and intraspecific variation accounted for 44% of the total variation.Despite the fact that species composition varied across elevation and species richness decreased dramatically along the elevational gradient,there was little variance at our largest(elevation)scale in leaf traits and functional diversity remained constant along the elevational gradient,indicating that traits responded to smaller scale influences.External filtering was only observed at high elevations.However,strong internal filtering was detected along the entire elevational gradient in understory herbaceous communities,possibly due to competition.Our results provide evidence that species coexistence in understory herbaceous communities might be structured by differential niche-assembled processes.This approach ee integrating different biological scales of trait variation ee may provide a better understanding of the mechanisms involved in the structure of communities.
基金financially supported by grant 31560224 and 31360074 from the National Natural Science Foundation of Chinagrant 2015J002 from the Graduate Science of foundation projects of Yunnan Educational Committee
文摘Cinnarnomum chago (family Lauraceae) is an essential source of timber and oil. This plant is narrowly distributed in the western part of the Yunnan Province. In this study, the distribution, habitat, and biological characteristics of C chago were examined through field investigation. The genetic diversity and the variation of the remnant populations were also studied using the inter-simple sequence repeat technique. Results showed that C chago is mainly distributed in the upstream tributary mountains of Lancang River in Yunlong County of Yunnan Province. The species distribution exhibited a fragmented pattern with five isolated populations and high-frequency anthropogenic interference. A combination of morphological features (opposite leaves, pinnate leaf veins, absence of glandular fossa, large drupe, small punch, and pollen surface with triangular spike grain, with cushion bumps at the base) indicated that C. chago is a key phylogenetic taxon between the two sections of Asian Cinnamomurn plants (Sect. Camphora (Trew) Meissn. and Sect. Cinnamomum). Analysis of the genetic diversity of C. chago indicated that it has a moderately high level of genetic diversity at the population and species levels (populations level: Ne - 1.629, H = 0.348, I=0.504, and PPB = 83.3%; species level: Ne - 1.864, H = 0.460, I = 0.652, and PPB - 100%). Analysis of molecular variance revealed that 17% of the genetic variation was divided between the populations, whereas 83% was observed within the populations. Based on these results, we suggest the inclusion of C. chago in the Wild Plants with Extremely Small Populations in China. Moreover, the species should be given special attention and protection. Some strategies were proposed for the conservation of the C. chago populations.
基金the National Natural Science Foundation of China(31160122)the Key Laboratory of Grassland Ecosystem(Gansu Agricultural University),Ministry of Education(CYzs-2011011)for financial support
文摘A total of 50 endophytic bacterial isolates were obtained from Kobreasia capillifolia at alpine grasslands in the Eastern Qilian Mountains on the Tibetan Plateau in China. Based on the sequencing and phylogenetic analysis of 16 S r DNA genes, all isolates phylogenetically related closely to Bacillus, Acinetobacter, Stenotrophomonas, Brevundimonas, Arthrobacter, Curtobacterium, Paenibacillus, Plantibacter, Promicromonospora, Serratia, and Microbacterium, among which Bacillus was the predominant genus(47.8% of the total number of endophytic isolates). These isolates possessed different biological functions. In 50 endophytic bacteria, 42 isolates produced indole acetic acid(IAA) on King medium. There were seven isolates showing potency of mineral phosphate solubilization in Pikovaskaia's(PKO) liquid medium. Seven isolates exhibited antagonistic effect against Fusarium avenaceum, Colletotrichum coccodes and Phoma foveata. This was the first report on diversity and plant growth promotion of endophytic bacteria from K. capillifolia on alpine grassland in the Eastern Qilian Mountains, Chain. It is essential for revealing the relationship among plant, microorganism, and the special environment because the potential function of endophytic bacteria made a contribution to the interactions of plants and endophytic bacteria.
基金supported in parts by the United States Department of Agriculture Mc Intire-Stennis Act Fund WVA00104the Division of Forestry and Natural Resources,West Virginia University
文摘Background: With the loss of species worldwide due to anthropogenic factors, especially in forested ecosystems, it has become more urgent than ever to understand the biodiversity-ecosystem functioning relationship (BEFR). BEFR research in forested ecosystems is very limited and thus studies that incorporate greater geographic coverage and structural complexity are needed. Methods: We compiled ground-measured data from approx, one half million forest inventory sample plots across the contiguous United States, Alaska, and northeastern China to map tree species richness, forest stocking, and productivity at a continental scale. Based on these data, we investigated the relationship between forest productivity and tree species diversity, using a multiple regression analysis and a non-parametric approach to account for spatial autocorrelation. Results: In general, forests in the eastern United States consisted of more tree species than any other regions in the country. The highest forest stocking values over the entire study area were concentrated in the western United States and Central Appalachia. Overall, 96.4 % of sample plots (477,281) showed a significant positive effect of species richness on site productivity, and only 3.6 % (17,349) had an insignificant or negative effect. Conclusions: The large number of ground-measured plots, as well as the magnitude of geographic scale, rendered overwhelming evidence in support of a positive BEFR. This empirical evidence provides insights to forest management and biological conservation across different types of forested ecosystems. Forest timber productivity may be impaired by the loss of species in forests, and biological conservation, due to its potential benefits on maintaining species richness and productivity, can have profound impacts on the functioning and services of forested ecosystems.