A simple control structure in servo system is occasionally needed for simple industrial application which precise and high control performance is not exessively important so that the cost production can be reduced eff...A simple control structure in servo system is occasionally needed for simple industrial application which precise and high control performance is not exessively important so that the cost production can be reduced efficiently. Simplified vector control, which has simple control structure, is utilized as the permanent magnet synchronous motor control algorithm and genetic algorithm is used to tune three PI controllers used in simplified vector control. The control performance is obtained from simulation and investigated to verify the feasibility of the algorithm to be applied in the real application. Simulation results show that the speed and torque responses of the system in both continuous time and discrete time can achieve good performances. Furthermore, simplified vector control combined with genetic algorithm has a similar perfofmance with conventional field oriented control algorithm and possible to be realized into the real simple application in the future.展开更多
An adaptive technique adopting quantum genetic algorithm (QGA) for antenna impedance tuning is presented. Three examples are given with different types of antenna impedance. The frequency range of the dual standards...An adaptive technique adopting quantum genetic algorithm (QGA) for antenna impedance tuning is presented. Three examples are given with different types of antenna impedance. The frequency range of the dual standards is from 1.7 to 2.2 GHz. Simulation results show that the proposed tuning technique can achieve good accuracy of impedance matching and load power. The reflection coefficient and VSWR obtained are also very close to their ideal values. Comparison of the proposed QGA tuning method with conventional genetic algorithm based tuning method is Moreover, the proposed method can be useful for software wireless bands. also given, which shows that the QGA tuning algorithm is much faster. defined radio systems using a single antenna for multiple mobile and展开更多
This paper presents a chaos-genetic algorithm (CGA) that combines chaos and genetic algorithms. It can be used to avoid trapping in local optima profiting from chaos'randomness,ergodicity and regularity. Its prope...This paper presents a chaos-genetic algorithm (CGA) that combines chaos and genetic algorithms. It can be used to avoid trapping in local optima profiting from chaos'randomness,ergodicity and regularity. Its property of global asymptotical convergence has been proved with Markov chains in this paper. CGA was applied to the optimization of complex benchmark functions and artificial neural network's (ANN) training. In solving the complex benchmark functions,CGA needs less iterative number than GA and other chaotic optimization algorithms and always finds the optima of these functions. In training ANN,CGA uses less iterative number and shows strong generalization. It is proved that CGA is an efficient and convenient chaotic optimization algorithm.展开更多
文摘A simple control structure in servo system is occasionally needed for simple industrial application which precise and high control performance is not exessively important so that the cost production can be reduced efficiently. Simplified vector control, which has simple control structure, is utilized as the permanent magnet synchronous motor control algorithm and genetic algorithm is used to tune three PI controllers used in simplified vector control. The control performance is obtained from simulation and investigated to verify the feasibility of the algorithm to be applied in the real application. Simulation results show that the speed and torque responses of the system in both continuous time and discrete time can achieve good performances. Furthermore, simplified vector control combined with genetic algorithm has a similar perfofmance with conventional field oriented control algorithm and possible to be realized into the real simple application in the future.
基金Projects(61102039, 51107034) supported by the National Natural Science Foundation of ChinaProject(2011FJ3080) supported by the Planned Science and Technology Project of Hunan Province ChinaProject supported by Fundamental Research Funds for the Central Universities, China
文摘An adaptive technique adopting quantum genetic algorithm (QGA) for antenna impedance tuning is presented. Three examples are given with different types of antenna impedance. The frequency range of the dual standards is from 1.7 to 2.2 GHz. Simulation results show that the proposed tuning technique can achieve good accuracy of impedance matching and load power. The reflection coefficient and VSWR obtained are also very close to their ideal values. Comparison of the proposed QGA tuning method with conventional genetic algorithm based tuning method is Moreover, the proposed method can be useful for software wireless bands. also given, which shows that the QGA tuning algorithm is much faster. defined radio systems using a single antenna for multiple mobile and
基金Sponsored by the National Natural Science Foundation of China(Grant No. 60674024)the Initial Foundation of Civil Aviation University of China(Grant No. 06QD04x)
文摘This paper presents a chaos-genetic algorithm (CGA) that combines chaos and genetic algorithms. It can be used to avoid trapping in local optima profiting from chaos'randomness,ergodicity and regularity. Its property of global asymptotical convergence has been proved with Markov chains in this paper. CGA was applied to the optimization of complex benchmark functions and artificial neural network's (ANN) training. In solving the complex benchmark functions,CGA needs less iterative number than GA and other chaotic optimization algorithms and always finds the optima of these functions. In training ANN,CGA uses less iterative number and shows strong generalization. It is proved that CGA is an efficient and convenient chaotic optimization algorithm.